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Eurocode 8 - Design of structures for 
earthquake resistance

• EN1998-1: General rules, seismic actions and rules 
for buildings

q

g

• EN1998-2: Bridges

• EN1998-3: Assessment and retrofitting of buildings 

• EN1998-4: Silos tanks and pipelinesEN1998-4: Silos, tanks and pipelines

• EN1998-5: Foundations, retaining structures and 
t h i l tgeotechnical aspects

• EN1998-6: Towers, masts and chimneysy



Seminar ‘Bridge Design with Eurocodes’ – JRC Ispra, 1-2 October 2012 6

EN1998-2: Bridges

EN1998-2 to be applied in 
combination with EN1998-1, 
EN 1998 5 and the otherEN 1998-5 and the other 
Eurocodes
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EN1998-2: Bridges NDPs

• Introduction (1)
B i i t d li it i (8)

• Seismic action (4)
• Basic requirements and compliance criteria (8)

• Strength verification (4)
• Analysis (2)

• Detailing (5)
• Bridges with seismic isolation (4)g ( )

8 Annexes (2)( )



Seminar ‘Bridge Design with Eurocodes’ – JRC Ispra, 1-2 October 2012 8

EN1998-2: Bridges
ANNEXESANNEXES
• A (Informative): Probabilities related to the reference seismic action. Guidance for 

the selection of the design seismic action during the construction phase
• B (Informative): Relationship between displacement ductility and curvature 

ductility factors of plastic hinges in concrete piers
• C (Informative): Estimation of the effective stiffness of reinforced concrete 

ductile members
• D (Informative): Spatial variability of earthquake ground motion: Model and 

methods of analysis
• E (Informative): Probable material properties and plastic hinge deformation 

capacities for nonlinear analysis
• F (Informative): Added mass of entrained water for immersed piers
• G (Normative): Calculation of capacity design effects
• H (Informative): Static non-linear analysis (Pushover)
• J (Normative): Variation of design properties of seismic isolator unitsJ (Normative): Variation of design properties of  seismic isolator units
• JJ (Informative): -factors for common isolator types
• K (Informative): Tests for validation of design properties of sesimic isolator units
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Objectives of EN 1998
In the event of earthquakes:

Human lives are protected

Damage is limited

Structures important for civil protection 
remain operational

Special structures – Nuclear Power Plants, Offshore p ,
structures, Large Dams – outside the scope of EN 1998
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Fundamental requirements
No collapse requirement:No-collapse requirement:

Withstand the design seismic action without local or 
global collapseglobal collapse

Retain structural integrity and residual load bearing
i f h ( i h id blcapacity after the event (even with considerable 

damage)

Flexural yielding of piers allowed. Bridge deck 
expected to avoid damage

For ordinary structures this requirement should be met for a 
reference seismic action with 10 % probability of exceedance in 
50 years (recommended value) i.e. with 475 years Return Period
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Fundamental requirements
Minimisation of DamageMinimisation of Damage

Withstand a more frequent seismic action without 
damage (remaining operational without 
interruption)

Minor damage only in secondary components 
(and/or in parts specifically intended to dissipate 

)

For ordinary structures this requirement should be met for a seismic

energy)

For ordinary structures this requirement should be met for a seismic 
action with “high probability of occurrence”.
No recommended value is given (10 % probability of exceedance in 10 years 
i.e. with 95 years Return Period could be used)
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Intended seismic behaviour

• Ductile  (D)
• Limited ductile/essentially elastic  (LD)
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Ductile behaviour
• Provide for the formation of an intended 

configuration of flexural plastic hinges

• The bridge deck shall remain within the elastic range

Global F D relation with a• Global F-D relation with a 
significant force plateau at 
yield. Ensure hystereticyield. Ensure hysteretic 
energy dissipation over at 
least 5 inelastic 
deformation cycles
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Ductile behaviour

• Resistance verifications (for Reinforced Concrete in 
accordance with Eurocode 2, with some additional rules 
for shear and for Steel Structures in accordance with 
Section 6 of EN 1998-1 for dissipative structures)

• Capacity design: Shear and joints

• Overstrength factors

• Detailing for ductility: Global ductility d and local 
ductility  (curvature) and  (rotation)

Overstrength factors

ductility  φ (curvature) and   (rotation)

• Ductility verification: Deemed to satisfy rules in 
S ti 6Section 6
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Limited ductility/Essentially elastic
• Deviation from ideal elastic provides some hysteretic 

energy dissipation.

• Corresponds to a value of the behaviour factor q ≤ 1,5

• Values of q in the range 1 ≤ q ≤ 1,5 are mainly attributed 
to the inherent margin between design and probable 
strength in the seismic design situation (overstrength)



Seminar ‘Bridge Design with Eurocodes’ – JRC Ispra, 1-2 October 2012 16

Reliability differentiation

Target reliability of requirement depending on 
consequences of failure

Classify the structures into importance 
classes

Assign a higher or lower return period to 
the design seismic action

I ti l t lti l th f i i

the design seismic action

In operational terms multiply the reference seismic 
action by the importance factor  I
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Importance classes for bridges 
Cl III B id f iti l i t f i t i i i tiClass III: Bridges of critical importance for maintaining communications, 
especially in the immediate post-earthquake period; bridges the failure of 
which is associated with a large number of probable fatalities and major 
bridges where a design life greater than normal is required

Class II: General road and railway bridges (average importance)Class II: General road and railway bridges (average importance)

Class I: Bridges meeting the following conditions simultaneously (less than 
average importance):average importance):
− the bridge is not critical for communications, and
− the adoption of either the reference probability of exceedance, PNCR, in 

50 f th d i i i ti f th t d d b id d i

Importance factors for bridges (recommended values):

50 years for the design seismic action, or of the standard bridge design 
life of 50 years is not economically justified.

Importance factors for bridges (recommended values):
 I = 1,3; 1,0 and 0,85
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Importance factor and return period
At t it th l t f d H( ) f thAt most sites the annual rate of exceedance, H(agR), of the 
reference peak ground acceleration agR may be taken to vary with 
agR as: H(agR ) ~ k0 agR

-k with the value of the exponent k depending gR ( gR ) 0 gR p p g
on seismicity, but being generally of the order of 3.

If the seismic action is defined in terms of the reference peak p
ground acceleration agR, the value of the importance factor I  to 
achieve the same probability of exceedance in TL years as in the 
T years for which the reference seismic action is defined may beTLR years for which the reference seismic action is defined, may be 
computed as:  I ~ (TLR/TL) –1/k

Hence the implicit ret rn periods for the 3 Importance Classes areHence, the implicit return periods for the 3 Importance Classes are:
Class III: 1.044 years (~ 5% in 50 years)

Class II: 475 years (10% in 50 years)Class II:     475 years (10% in 50 years)

Class I:      292 years (~15% in 50 years)
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Ground conditions
Five ground types:Five ground types:

A - Rock
B Very dense sand or gravel or very stiff clayB - Very dense sand or gravel or very stiff clay
C - Dense sand or gravel or stiff clay
D - Loose to medium cohesionless soil or soft to 

firm cohesive soil
E - Surface alluvium layer C or D, 5 to 20 m thick, 

over a much stiffer material

Ground conditions defined by shear wave velocities in the top
2 special ground types S1 and S2 requiring special studies

Ground conditions defined by shear wave velocities in the top 
30 m and also by indicative values for NSPT and cu
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Ground conditions
Table 3 1: Ground typesTable 3.1: Ground types

Ground 
type

Description of stratigraphic profile Parameters  
type

  vs,30 (m/s) NSPT 
(blows/30cm)

cu (kPa) 

A R k th k lik l i l 800A Rock or other rock-like geological 
formation, including at most 5 m of 
weaker material at the surface.  

 800 _ _

B Deposits of very dense sand, gravel, or 
very stiff clay, at least several tens of 
metres in thickness, characterised by a 

360 – 800  50  

 

 250 

gradual increase of mechanical 
properties with depth. 
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Ground conditions
Table 3 1: Ground typesTable 3.1: Ground types

Ground 
type

Description of stratigraphic profile Parameters  
type

  vs,30 (m/s) NSPT 
(blows/30cm)

cu (kPa) 

C D d it f d di 180 360 15 50 70 250C Deep deposits of dense or medium-
dense sand, gravel or stiff clay with 
thickness from several tens to many 
hundreds of metres

180 – 360 15 - 50 70 - 250 

hundreds of metres.

D Deposits of loose-to-medium 
cohesionless soil (with or without some 

f h i l ) f

 180  15  70 

soft cohesive layers), or of 
predominantly soft-to-firm cohesive 
soil. 
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Ground conditions
Table 3 1: Ground typesTable 3.1: Ground types

Ground 
type

Description of stratigraphic profile Parameters  
yp

  vs,30 (m/s) NSPT 
(blows/30cm)

cu (kPa) 

E A soil profile consisting of a surfaceE A soil profile consisting of a surface 
alluvium layer with vs values of type C 
or D and thickness varying between 
about 5 m and 20 m, underlain by , y
stiffer material with vs > 800 m/s.  

S1 Deposits consisting, or containing a 
layer at least 10 m thick, of soft

 100 

(i di i )

_ 10 - 20 
layer at least 10 m thick,  of soft 
clays/silts with a high plasticity index 
(PI  40) and high water content 

(indicative)

S2 Deposits of liquefiable soils ofS2 Deposits of liquefiable soils, of 
sensitive clays, or any other soil profile 
not included in types A – E or S1 
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Seismic zonation

Competence of National Authorities

Described by a R (reference peak groundDescribed by agR (reference peak ground 
acceleration on type A ground)

Corresponds to the reference return period TNCR

Modified by the Importance Factor  I to becomeModified by the Importance Factor  I to become 
the design ground acceleration (on type A 
ground) ag = agR . I

Objective for the future updating of EN1998-1:
European zonation map with spectral values for different 

g ) g gR  I

p p p
hazard levels (e.g. 100, 500 and 2.500 years)
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Basic representation of the seismic action

Elastic response spectrum

Common shape for the ULS and DLS verificationsp

2 orthogonal independent horizontal components

Vertical spectrum shape different from the 
horizontal spectrum (common for all ground types)

Possible use of more than one spectral shape (to 
model different seismo-genetic mechanisms)

Account of topographical effects (EN 1998-5) and spatial 

model different seismo genetic mechanisms)

variation of motion (EN1998-2) required in some special cases
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Definition of the horizontal elastic response spectrum 
(four branches)

0  T  TB Se (T) = ag . S . (1+T/TB . ( . 2,5 -1))

TB  T  TC Se (T) = ag . S .  . 2,5

TC  T  TD Se (T) = ag . S .  . 2,5 (TC /T)( ) g  ( )

TD  T  4 s Se (T) = ag . S .  . 2,5 (TC . TD /T 2)
S (T) l ti tSe (T) elastic response spectrum
ag design ground acceleration on type A ground
TB TC TD corner periods in the spectrum (NDPs)B  C  D p p ( )
S soil factor (NDP)
 damping correction factor ( = 1 for 5% damping)

Additional information for T > 4 s in Informative Annex in EN 1998-1
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Normalised elastic response spectrum (standard shape)

Control variables

• S, TB, TC, TD  (NDPs)( )
• ( 0,55) damping 
correction for   5 %

Fixed variables
• Constant accelerationConstant acceleration, 
velocity & displacement 
spectral branches
• acceleration spectral 
amplification: 2,5

Different spectral shape for vertical spectrum (spectral 
amplification: 3,0)
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Correction for damping   55,05/10     ,
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To be applied only to elastic spectra
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Elastic response spectrum

Two types of (recommended) spectral shapes

Depending on the characteristics of the most 
significant earthquake contributing to the local 
ha ard

• Type 1 - High and moderate seismicity regions 

hazard:

yp g y g
(Ms > 5,5 )

• Type 2 - Low seismicity regions (Ms  5,5 ); 

Optional account of deep geology effects (NDP) for the definition

ype o se s c ty eg o s ( s 5,5 );
near field earthquakes
Optional account of deep geology effects (NDP) for the definition 
of the seismic action
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Recommended parameters for the definition of the 
response spectra for various ground typesresponse spectra for various ground types

Seismic action Type 1 Seismic action Type 2Seismic action Type 1 Seismic action Type 2

Ground
Type S TB (s) TC (s) TD (s) S TB (s) TC (s) TD (s)yp

A 1,0 0,15 0,4 2,0 1,0 0,05 0,25 1,2

B 1,2 0,15 0,5 2,0 1,35 0,05 0,25 1,2, , , , , , , ,

C 1,15 0,2 0,6 2,0 1,5 0,1 0,25 1,2

D 1,35 0,2 0,8 2,0 1,8 0,1 0,3 1,2D 1,35 0,2 0,8 2,0 1,8 0,1 0,3 1,2

E 1,4 0,15 0,5 2,0 1,6 0,05 0,25 1,2
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Recommended elastic response spectra
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Design spectrum for elastic response analysis
(derived from the elastic spectrum)

0  T  TB Sd (T) = ag . S . (2/3+T/TB . (2,5/q -2/3))

TB  T  TC Sd (T) = ag . S . 2,5/q

TC  T  TD Sd (T) = ag . S . 2,5/q . (TC /T)( ) g , q ( )
  . ag

TD  T  4 s Sd (T) = ag . S . 2,5/q . (TC . TD /T 2 )( ) g , q ( )
  . ag

Sd (T) design spectrum( ) g p
q behaviour factor
 lower bound factor (NDP recommended value: 0,2) 

Specific rules for vertical action:
avg = 0,9 . ag or avg = 0,45 . ag ;  S = 1,0;  q  1,5
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Alternative representations of the seismic action

Time history representation (essentially for NL analysis 
purposes)

Three simultaneously acting accelerograms

• Artificial accelerograms
Match the elastic response spectrum for 5% damping
D ti tibl ith M it d (T 10 )Duration compatible with Magnitude (Ts  10 s)
Minimum number of accelerograms: 3

• Recorded or simulated accelerograms
Scaled to ag . S
Match the elastic response spectrum for 5% dampingMatch the elastic response spectrum for 5% damping
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Spatial variability of the seismic action

Spatial variability shall be considered  if one of the 
following holds:

• More than one ground type occurs in the supports of 
the bridgethe bridge

• The length of continuous deck exceeds Llim = Lg/1,5
Lg - Distance beyond which motion is uncorrelated

Ground Type A B C D E
Lg (m) 600 500 400 300 500

g y

g

Simplified model for accounting for the spatial

Recommended values

Simplified model for accounting for the spatial 
variability and additional information in Annex D
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Modelling - Mass
M f P t l d d Q i t l f th• Mass of Permanent loads and Quasi-permanent values of the 
Variable loads (2 Qk)
(For traffic loads: 2 = 0,2 in road bridges; 2 = 0,3 in railway bridges)

• Mass of entrained water added to the mass of immersed piers
(Procedure for calculation in Informative Annex F)

• Damping ratio values for elastic analysis :
W ld d t l ξ 0 02

( )

• Welded steel: ξ = 0,02
• Bolted steel: ξ = 0,04
• Presstressed concrete: ξ = 0 02• Presstressed concrete: ξ = 0,02
• Reinforced concrete : ξ = 0,05
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Modelling - Stiffness
F li l i th d d t th t fl l tiff• For linear analysis methods adopt the secant flexural stiffness 
at yield (in Limited Ductile bridges the unreduced stiffness of gross concrete 
sections may be used)

• For Prestressed and Reinforced concrete decks the flexural 
stiffness of the gross sections should be used

• Reduced torsional stiffness of concrete decks:
• Open sections: Ignore torsional stiffness
• Presstressed box sections: 50% stiffness
• Reinforced concrete box sections: 30% stiffness
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Regularity
L l f d ti f t (f b i)• Local force reduction factor (for member i):

ri = q MEd,i / MRd,i

MEd,i - Maximum value of design
moment at the intended plastic hinge location 
from the analysiso e a a ys s
MEd,i - Design flexural resistance
with actual reinforcement

• A bridge is considered regular if:
 = r / r i ≤ 0 (recommended value 0 = 2 0)

• For irregular bridges the q factor is reduced:
q q 0 /  ≥ 1 0

  rmax / rmin ≤ 0   (recommended value 0  2,0)

qr q 0 /  ≥ 1,0

Regularity of the bridge conditions the admissible methods of analysis



Seminar ‘Bridge Design with Eurocodes’ – JRC Ispra, 1-2 October 2012 37

Methods of Analysis
Li d i l i R t th d• Linear dynamic analysis – Response spectrum method
Significant modes: Sum of effective mass > 0,9 total mass
Combination of modes:

Square root of the sum of squares (SRSS) or
Complete Quadratic Combination (CQC) for closely spaced 
modesmodes 

Combination of components of seismic action:
Square root of the sum of squares (SRSS) of each componentq q ( ) p

• Fundamental mode method (static forces)
Field of application limited to very simple situations (Rigid deckField of application limited to very simple situations (Rigid deck 

model; Flexible deck model and Individual pier model)

• Nonlinear dynamic time history analysis• Nonlinear dynamic time history analysis
• Static nonlinear analysis (pushover analysis)
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Maximum values 
of the behaviour 
factor q

Valid for 
normalized axialnormalized axial 
load: k ≤ 0,3



Seminar ‘Bridge Design with Eurocodes’ – JRC Ispra, 1-2 October 2012 39

Correction of values of the behaviour factor q

• Reduction for normalised axial load k for 0,3 < k ≤ 0,6:
q = q (( 0 3) / 0 3) x (q 1) ≥ 1 0qr = q – ((k – 0,3) / 0,3) x (q – 1) ≥ 1,0 

• If locations of plastic hinges are not accessible forIf locations of plastic hinges are not accessible for
inspection and repair: 

qr = 0,6 x q ≥ 1,0
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Capacity Design

M Moment (from the analysis) at the plastic hinge locationME - Moment (from the analysis) at the plastic hinge location
MRd - Design flexural resistance with actual reinforcement
M0 = γ0 MRd - Overstrength moment (for the calculation of shear)

Recommended values:
For concrete members γ0 = 1,35γ0 ,
For steel members γ0 = 1,25
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Detailing

• Confinement of concrete piers

• Avoidance of buckling of longitudinal reinforcement

B i d i i li k

• Foundations

• Bearings and seismic links

• Abutments and retaining walls• Abutments and retaining walls
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Seismic Displacements

Seismic displacement: dE = ± η μd dEe

d di l t t d ith th d i t (i l didEe displacement computed with the design spectrum (including 
the q factor)

η damping correction factorη p g
μd displacement ductility factor

T ≥ T 1 25TT ≥ To = 1,25TC μd = q

T < To μd = (q - 1) (T0/T) + 1 ≤ 5 q − 4o μd (q ) ( 0 ) q
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Clearances
St t l d t t l d t ili h ld d t thStructural and non-structural detailing should accommodate the 
displacements in the seismic design situation

Seismic situation displacement: dEd = dE + dG +  dT

dE Seismic displacement
dG Long term displacement (prestress, creep, shrinkage)
d Thermal displacementdT Thermal displacement
 Quasi permanent combination factor
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Thank you for your attention


