

Dissemination of information for training - Lisbon, 10-11 February 2011

Specific Rules for Design and Detailing of Steel Buildings

Illustrations of Design

André PLUMIER University of Liege

> Hervé DEGEE University of Liege

Hughes SOMJA INSA Rennes

2

Design objective for dissipative structure: a global plastic mechanism in a decided scheme

Why global?

To have numerous dissipative zones to dissipate more energy To avoid excessive local plastic deformation as a result of concentration of deformations in few places

Why in a decided scheme ?

Because it is not thinkable to have all zones of the structure with ideal characterisics for plastic deformations

=> Design of dissipative structure

1. Define the objective: a global mechanism

- **2.** Pay a price for the mechanism to be global:
 - criteria for numerous dissipative zones
 - capacity design of resistances of all elements other than the plastic zones

3. Pay a price at local zones: criteria aiming at local ductility

For instance - In steel: rules for connections classes of sections plastic rotation capacity

- In composite steel concrete: position of neutral axis

5

Definition of the objective « global plastic mechanism» There may be typologies other than the usual ones...

Example Using « Buckling Restrained Bars » at bottom of frame => similar to reinforced concrete wall: 1 big plastic hinge

Required steel characteristics

- Classical constructional steel
- Charpy toughness: absorbed energy min 27J (at t^o_{usage})
- Distribution yield stresses and toughness such that :

dissipatives zones at intended places

yielding at those places before the other zones leave the elastic

8

<u>Required steel characteristics</u> <u>Conditions on f_v of dissipative zones</u> to achieve $f_{\text{ymax, real}} \leq f_{\text{ydesign}}$ to have a correct reference in capacity design **3 possibilities** a) Compute considering that in dissipative zones: $f_{y,max} = 1,1 \gamma_{ov} f_{y}$ γ_{ov} material overstrength factor f_{v} : nominal $\gamma_{ov} = f_{v,real} / f_v$ European rolled sections: $\gamma_{ov} = 1,25$ Ex: S235, $\gamma_{ov} = 1,25$ => $f_{v,max} = 323$ N/mm² an upper value $f_{y,max}$ is specified for dissipative zones b) Do design, based on a single nominal yield strength f_v for dissipative & non dissipative zones Use nominal f_y for dissipative zones, with specified $f_{y,max}$ Use higher nominal f_v for non dissipative zones and connections S235 dissipative zones, with $f_{v,max} = 355 \text{ N/mm}^2$ Ex: S355 non dissipative zones c) *f*_{v.max} of dissipative zones is measured is the value used in design => γ_{0v} = 1

vissemination of information for training – Lisbon 10-11 February 2011						
TYPE of STRUCTURE	Ductility Class					
	DCM	DCH				
Moment resisting frame	4	5 α _u / α ₁				
Frame with concentric bracings						
diagonal type	4	4				
V type	2	2,5				
Frame with eccentric bracings	4	5 α _u / α ₁				
Inverted pendulum	2	2 α _u / α ₁				
Structures with reinforced concrete core / walls						
Moment resisting frame + concentric bracings	4	4 α _u / α ₁				
Concrete infills not connected in contact with						
frame	2	2				
Concrete infills connected => composite						
Concrete infills isolated from the frame						
	4	5 α _u / α ₁				

- Criteria applicable to the primary structure
- Criteria for local ductility:
 - Free choice: local dissipative zones can be
 - => in structural elements
 - => in connections But effectiveness to demonstrate Semi-rigid or partial strength connections OK if:
 - adequate rotation capacity <=>global deformations
 - members framing into connections are stable
 - effect of connections deformations on drift analysed
- Plastic deformation capacity of elements (compression, bending) => limitation of b/t_f or c/t_f

=> classes of sections of Eurocode 3

Ductility Class	Behaviour factor q	Cross Sectional Class
DCH	$\overline{q} > 4$	class 1
DCM	$2 \leq q \leq 4$	class 2
DCM	$1,5 \le q \le 2$	class 3
DCL	q ≤ 1,5	class 1, 2, 3, 4

Dissemination of information for training – Lisbon 10-11 February 2011

11

Illustration of Design 1

Steel Moment Resisting Frame

André PLUMIER University of Liege

Dissemination of information for training – Lisbon 10-11 February 2011 13
Design steps
Preliminary design
Define minimum beam sections deflection & resistance criteria under gravity loading
Iterations until all design criteria fulfilled
 column sections checking 'Weak Beam Strong Column'
- seismic mass m = ($G + \psi_{Ei} Q$)
- period T by code formula
 resultant base shear F_b => storey forces
- static analysis one plane frame
'lateral loads' magnified by torsion factor $\delta => E$
- static analysis gravity loading ($G + \psi_{2i} Q$)
- stability check P- Δ effects parameter θ
in seismic loading situation: gravity loading= $G + \psi_{2i} Q$
 displacement checks under 'service' earthquake = 0,5 x design EQ
- combination action effects E + G + ψ_{2i} Q
- design checks: resistance of sections instability of elements
- Design of connections
 Design with RBS Reduced Beam Sections

Dissemination of information for training – Lisbon 10-11 February 2011

14

Site and building dataSeismic zone $a_{gR} = 2,0 \text{ m/s}^2$ Importance of the building; office building, $\gamma_l = 1,0 => a_g = 2,0 \text{ m/s}^2$ Service load $Q = 3 \text{ kN/m}^2$ Design spectrum; type 1Soil B => from code: S = 1,2 $T_B = 0,15s$ $T_C = 0,5s$ $T_D = 2s$ Behaviour factor: q = 4

Beams

Assumed fixed at both ends. Span I = 8mDeflection limit: f = I/300 under G+Q $f = pI^4 / 384EI = I/300$

min beam sections:

- direction x : IPE400 WpI = 1307.10³ mm³
- direction y : IPE360 Wpl = 1019.10³ mm³

I =23130.10⁴ mm⁴ I =16270. 10⁴ mm⁴

=> iterations

Dissemination of information for training – Lisbon 10-11 February 2011

15

<u>After iterations</u> Beams direction x: IPE 500 I= 48200.10⁴ mm⁴ WpI = 2194.10³ mm³ direction y: IPEA 450 I= 29760.10⁴ mm⁴ WpI= 1494.10³ mm³

Columns: HE340M: $I_{strong axis} = I_y = 76370.10^4 \text{ mm}^4$ $I_{weak axis} = I_z = 19710.10^4 \text{ mm}^4$ $W_{pl,strong axis} = 4718.10^3 \text{ mm}^3$ $W_{pl,weakaxis} = 1953.10^3 \text{ mm}^3$

Weak Beam-Strong Column (WBSC) check: $\sum M_{Rc} \ge 1,3 \sum M_{Rb}$ All S355 => criteria is: $\sum W_{pl, columns} \ge 1,3 \sum W_{pl, beams}$

<u>Seismic mass</u> above ground considered as fixity level $m = G + \psi_{Ei} Q = 3060.10^3 \text{ kg}$ $\psi_{2i} = 0.3 \varphi = 0.5 \psi_{Ei} = 0.15$

Note: steel frame = 7,5 % seismic mass could be taken constant in iterations $G+ \psi_{Ei} Q$ floors = 70% seismic mass

Evaluation of seismic design shear using the 'lateral forces' method

• Estimated fundamental period T of the structure: $T = C_t H^{3/4}$ $C_t = 0,085$ H = 6x 2,9 m = 17,4 m $= T = 0.085 \times 17.4^{3/4} = 0.72 \text{ s}$ • Design pseudo acceleration $S_d(T)$: $T_c < T < T_D$ $S_d(T) = (2,5 a_q \times S \times T_c)/(q \times T) = (2,5 \times 2 \times 1,2 \times 0,5)/(4 \times 0,72) = 1,04 \text{ m/s}^2$ Seismic design shear F_{bR} $F_{\rm bR} = m S_{\rm d}$ (7) $\lambda = 3060.10^3 \times 1,04 \times 0,85 = 2705.10^3 \text{ N} = 2705 \text{ kN}$ • 6 same frames floor diaphragm effective \Rightarrow seismic design shear F_{bx} in one frame: $F_{bx} = F_{bR} / 6 = 451 \text{ kN}$ • Torsion by amplifying F_{bx} by $\delta = 1 + 0.6x/L\delta = 1 + 0.6 \times 0.5 = 1.3$ *F*_{bx} including torsion: $F_{\rm bx} = 586 \, \rm kN$ **Storey forces** Triangular Distribution in kN F1= 27,9 F2= 55,8 F3= 83,7 F4= 111,6 F5= 139,5 F6= 167,5

Dissemination of information for training – Lisbon 10-11 February 2011

Dissemination of information for training - Lisbon 10-11 February 2011

Bending moment diagram: $E + G + \psi_{2i} Q$ Units: kNm

18

Dissemination of information for training – Lisbon 10-11 February 2011

19

Ultimate limit state. No-collapse requirementResistance condition $R_d \ge E_d$ R_d design resistance E_d design value of action effect in seismic design situation: $E_d = \Sigma \ G_{k,j} \ \ll + \gg P \ \ll + \gg \Sigma \psi_{2i}. Q_{ki} \ \ll + \gg \ \gamma_1 \ A_{Ed}$ In MRF: Check plastic hinges at beam ends $M_{pl,Rd} \ge M_{Ed}$

Limitation of 2nd order effects

If necessary, 2nd order effects are taken into account in the value of E_d 2nd order moments $P_{tot} d_r \Leftrightarrow 1^{st}$ order moments $V_{tot} h$ at every storey

- $V_{\rm tot}$ total seismic shear at considered storey
- H storey height
- **P**_{tot} total **G** at and above the storey
- $d_{\rm r}$ drift based on $d_{\rm s} = q d_{\rm e}$ Rules
- $\theta \le 0,1$ => P- Δ effects negligible
- 0,1< θ ≤ 0,2
- => multiply action effects by 1/(1-θ)
- Always: θ≤ 0,3

Dissemination of information for training – Lisbon 10-11 February 2011

Damage limitation

Non-structural elements of brittle materials attached to the structure:

$$d_{\rm r} v \le 0,005 h$$

- **Ductile non-structural elements:** $d_r v \le 0,0075h$
- Non-structural elements not interfering with structural deformations (or no non-structural elements): $d_r \nu \le 0.010 h$
 - *d*_r design interstorey drift
 - *h* storey height;
 - reduction factor for lower return period of the seismic action associated with the damage limitation requirement.

Recommended :

v = 0,4 for importance classes III and IV

v = 0,5 for importance classes I and II

Dissemination of information for training – Lisbon 10-11 February 2011

Results of the lateral force method analysis

<u>Lateral force method</u> = $E_s + G + \psi_{Ei} Q$								$G + \psi_{\rm Ei} Q = 35,42$ kN/m						
Stor ey	Absolute displace . ment of the storey : d _i [m]		Design interstore y drift (<i>d</i> _i - <i>d</i> _{i-1}): d _r [m]		Storey lateral forces <i>E</i> _i : V _i [kN]		Shear at storey <i>E</i> _i : V _{tot} [kN]		Total cumulative gravity load at storey <i>E</i> _i : P _{tot} [kN]		Storey height E _i : h _i [m]		Interstorey drift sensitivity coefficient $\theta = \frac{P_{tot} \cdot d_r}{V_{tot} \cdot h} \le 0,10$	
E ₀	d ₀	0	d _{r0}											
E ₁	d ₁	0,033	d _{r1}	0,033	V ₁	27,9	V _{tot 1}	586,0	P _{tot 1}	5100	h ₁	2,9	θ ₁	0,100
E ₂	d ₂	0,087	d _{r2}	0,054	V ₂	55,8	V _{tot 2}	558,1	P _{tot 2}	4250	h ₂	2,9	θ ₂	0,141
E ₃	d ₃	0,139	d _{r3}	0,052	V ₃	83,7	V _{tot 3}	502,3	P _{tot 3}	3400	h ₃	2,9	θ ₃	0,122
E ₄	d ₄	0,184	d _{r4}	0,044	V ₄	111,6	V _{tot 4}	418,6	P _{tot 4}	2550	h ₄	2,9	θ4	0,093
E ₅	d_5	0,216	d _{r5}	0,033	V ₅	139,5	V _{tot 5}	307,0	P _{tot 5}	1700	h ₅	2,9	θ ₅	0,062
E ₆	d ₆	0,238	d _{r6}	0,021	V ₆	167,5	V _{tot 6}	167,5	P _{tot 6}	850	h ₆	2,9	θ ₆	0,037

21

22

 $\frac{2^{nd} \text{ order effects}}{\theta_2 = 0,141}$ $\theta_3 = 0,122$ => increase M, V, N, d_r in elements at storey 2 and 3 => make resistance & deformation checks with increased values

<u>Checks under service earthquake</u> Interstorey drifts D_s max: $D_s = 0.5 \times 0.054 \times 1/(1 - \theta) = 0.031$ m Limit: 0.10 h = 0.1 x 2.9 m = 0.029m \approx 0.31 m

23

Dynamic analysis Modal superposition method

A single plane frame in each direction X or Y is analysed Torsion effects by $\delta = 1,3$ => a_g for the analysis: $a_g = 2 \times 1,3 = 2,6 \text{ m/s}^2$

Output:

 $T_1 = 1,17 \text{ s} > 0,72 \text{ s}$ $F_{bX} = 586 \text{ kN}$ lateral force methodone frame $F_{bX} = 396 \text{ kN}$ dynamic responseone frame

More refined analysis => economy

 θ does not differ much

Interstorey drift reduced D_s max: $D_s = 0.5 \times 0.035 \times 1/(1-0.137) = 0.020m$ Limit: 0.10 h = 0.1 x 2.9 m = 0.029m > 0.02 m => OK

24

Results of the modal superposition method

Dissemination of information for training – Lisbon 10-11 February 2011

Results of the modal superposition method

Modal superposition = $E_s + G + \psi_{Ei}$.Q							G + ψ_{Ei} Q = 35,42				kN/m			
Storey	Absolute displacem ent of the storey : d _i [m]		Design interstore y drift (<i>d</i> _i - <i>d</i> _{i-1}): <i>d</i> _r [m]		Storey lateral forces <i>E</i> _i : <i>V</i> _i [kN]		Shear at storey <i>E</i> _i : <i>V</i> _{tot} [kN]		Total cumulative gravity load at storey <i>E</i> _i : <i>P</i> _{tot} [kN]		Storey height <i>E</i> _i : <i>h</i> _i [m]		Interstorey drift sensitivity coefficient $\theta = \frac{P_{tot} \cdot d_r}{V_{tot} \cdot h} \le 0.10$	
E ₀	d ₀	0	d_{r0}											
E ₁	d ₁	0,022	d _{r1}	0,022	V ₁	26,6	V _{tot 1}	396,2	P _{tot 1}	5100	h ₁	2,9	θ 1	0,099
E ₂	d ₂	0,057	d _{r2}	0,035	V ₂	42,9	V _{tot 2}	369,7	P _{tot 2}	4250	h ₂	2,9	θ 2	0,137
E ₃	d ₃	0,090	d _{r3}	0,033	V ₃	50,0	V _{tot 3}	326,8	P _{tot 3}	3400	h ₃	2,9	θ ₃	0,118
E_4	d 4	0,117	d _{r4}	0,027	<i>V</i> ₄	61,1	V _{tot 4}	276,7	P _{tot 4}	2550	h ₄	2,9	θ4	0,086
E ₅	d ₅	0,137	d_{r5}	0,020	V 5	85,0	V _{tot 5}	215,6	P _{tot 5}	1700	h ₅	2,9	θ 5	0,054
E ₆	d ₆	0,148	d _{r6}	0,012	V ₆	130, 6	V _{tot 6}	130,6	P _{tot 6}	850	h ₆	2,9	θ ₆	0,027

25

Dissemination of information for training – Lisbon 10-11 February 2011

Elements checks Action effects to consider are:

They take into account:

- Section overstrength $\Omega = M_{pl,Rd} / M_{Ed}$
- Material overstrength $f_{y,real} / f_{y,nominal} = \gamma_{ov}$

<u>Column buckling</u> Buckling length = 2,9 m = storey height N_{b,Rd} = 9529 kN > 3732 kN at ground level

OK

 $N_{\rm Ed} = N_{\rm Ed G} + 1, 1 \gamma_{\rm ov} \Omega N_{\rm Ed E}$

 $M_{\rm Ed} = M_{\rm Ed G} + 1, 1\gamma_{\rm ov} \Omega M_{\rm Ed E}$

 $V_{\rm Ed} = V_{\rm Ed G} + 1, 1\gamma_{\rm ov} \Omega V_{\rm Ed E}$

Plastic hinges at column basisInteraction M - NEurocode 3 (EN1993-1-1 cl 6.2.9.1) $N_{Ed} = G + \psi_{2i} Q$ $n = N_{Ed} / N_{pl,Rd} = 0,184$ $a = (A-2bt_f)/A = (31580 - 2 \times 309 \times 40)/31580 = 0,22 > 0,17 (= n)$ $M_{pl,y,Rd} = f_{yd} \times W_{pl,y,Rd} = 1674,89 \text{ kNm}$ $M_{N,y,Rd} = M_{pl,y,Rd} (1-n)/(1-0,5 a) = 1540 \text{ kNm}$ $As n < a = > M_{N,z,Rd} = M_{pl,z,Rd} = 693 \text{ kNm}$ $As n < a = > M_{N,z,Rd} = M_{pl,z,Rd} = 693 \text{ kNm}$ $As n < a = > M_{N,z,Rd} = M_{pl,z,Rd} = 693 \text{ kNm}$ $As n < a = > M_{N,z,Rd} = M_{pl,z,Rd} = 693 \text{ kNm}$ $As n < a = > M_{N,z,Rd} = M_{pl,z,Rd} = 693 \text{ kNm}$ $As n < a = > M_{N,z,Rd} = M_{pl,z,Rd} = 693 \text{ kNm}$ $As n < a = N_{N,z,Rd} = M_{pl,z,Rd} = 693 \text{ kNm}$ $As n < a = N_{N,z,Rd} = M_{pl,z,Rd} = 693 \text{ kNm}$ $As n < a = N_{N,z,Rd} = M_{pl,z,Rd} = 693 \text{ kNm}$ $As n < a = N_{N,z,Rd} = M_{pl,z,Rd} = 693 \text{ kNm}$ $As n < a = N_{N,z,Rd} = M_{pl,z,Rd} = 693 \text{ kNm}$ $As n < a = N_{N,z,Rd} = M_{pl,z,Rd} = 693 \text{ kNm}$ $As n < a = N_{N,z,Rd} = M_{pl,z,Rd} = 693 \text{ kNm}$ $As n < a = N_{N,z,Rd} = M_{pl,z,Rd} = 693 \text{ kNm}$ $As n < a = N_{N,z,Rd} = M_{pl,z,Rd} = 693 \text{ kNm}$ $As n < a = N_{N,z,Rd} = M_{pl,z,Rd} = 693 \text{ kNm}$ $As n < a = N_{N,z,Rd} = M_{pl,z,Rd} = 693 \text{ kNm}$ $As n < a = N_{N,z,Rd} = M_{pl,z,Rd} = 693 \text{ kNm}$ $As n < a = N_{N,z,Rd} = M_{Pl,z,Rd} = 693 \text{ kNm}$ $As n < a = N_{N,z,Rd} = M_{Pl,z,Rd} = 693 \text{ kNm}$ $As n < a = N_{N,z,Rd} = M_{Pl,z,Rd} = 0.2 \text{ km}$ $As n < a = N_{N,z,Rd} = 0.2 \text{ km}$ $As n < a = N_{N,z,Rd} = 0.2 \text{ km}$ As n <

26

Dissemination of information for training – Lisbon 10-11 February 2011

Other checks

Beam lateral torsional buckling

M at beam column connection = M_{pl}

⇒ Lateral supports may be required

- Connection design condition
 - if dissipative zones are in beams =>

 $M_{\text{Rd,connection}} \geq \pm 1,1 \gamma_{\text{ov}} M_{\text{pl,Rd,beam}}$

- if dissipative connections
 - => capacity design refers to connection plastic resistance

29

31

Design of beam column connections

Detailing: not in EC8 in National Annexes, in AISC2000, AFPS2005,...

However 1 common feature:

Connection Types and corresponding ductility classes

1 bad	Connection Type	Maximum Ductility Class allowed			
woolf		Europe	US		
	Beam flanges welded, beam web bolted to	DCL *	OMF*		
	a shear tab welded to column flange. Fig. 34				
	Beam flanges welded, beam web welded to	DCH	SMF		
	a shear tab welded to column flange. Fig. 31				
	Beam flanges bolted, beam web bolted to a	DCH	SMF		
	shear tab welded to column flange. Fig. 35				
	Unstiffened end plate welded to beam and	DCH	SMF		
	bolted to column flange by 4 rows of bolts. Fig.36				
	Stiffened end plate welded to beam and	DCH	SMF		
	bolted to column flange by 8 rows of bolts. Fig. 37				
	Reduced beam section. Beam flanges welded, beam web	DCH	SMF		
	welded to shear tab welded to column flange. Fig.38				
	Reduced beam section. Unstiffened end plate welded to	DCH	SMF		
	beam and bolted to column flange by 4 rows of bolts.				
	Same as Fig.36, but with reduced flange sections.				
	Same as Fig.36, but with reduced flange sections.	, •			

*May be considered for DCM (equivalent to IMF) in some countries

Steel was ductile...

Vertical Fracture through Beam Shear Plate Connection

a. Fracture at Fused Zone

b. Column Flange "Divot" Fracture

Northridge 1994

32

Beam flanges welded, beam web bolted to shear tab welded to column flange

DCL low ductility

Beam flanges bolted; beam web bolted to shear tab welded to column flange.

33

DCM -DCH

Unstiffened end plate welded to beam and bolted to column flange by 4 rows of bolts DCM -DCH

34

Stiffened end plate welded to beam and bolted to column flange by 8 rows of bolts DCM -DCH

« Dogbone » or RBS Reduced beam section. Beam flanges welded, beam web welded to shear tab welded to column flange DCM -DCH

35

Weld access hole details in FEMA 350

 $\frac{\text{Design criteria}}{0,5b \le a \le 0,75b}$ $0,65h \le s \le 0,85h$ b: flange width
h: beam depth $0,2b \le c \le 0,25b$ $b_e = b - 2c$

Dissemination of information for training – Lisbon 10-11 February 2011

USA. Los Angeles area. 2000.

Grenoble. Rossignol Ski Factory. 2008.

Dissemination of information for training – Lisbon 10-11 February 2011

37

<u>A remark</u>

If beam flanges are welded to the column flanges and beam web is welded to a shear tab welded to the column flange

- the flange butt welds transmit $M_{pl,flanges}$
- the web welds transmit $M_{pl,web}$ + shear V_{Ed}

 $M_{\rm Rd, connection} \geq 1, 1 \gamma_{\rm ov} M_{\rm pl, Rd, beam}$

$$M_{\text{pl,flanges}} = b_{\text{f}} t_{\text{f}} f_{\text{y}} (d+t_{\text{f}})$$
$$M_{\text{pl,web}} = t_{\text{w}} d^2 f_{\text{y}} / 4$$

 $M_{\rm Rd,web,connection} \ge 1,1 \gamma_{\rm ov} M_{\rm pl,web} = 1,1 \gamma_{\rm ov} t_{\rm w} d^2 f_{\rm y} / 4$

=> shear tab stronger than the web=> Top and bottom welds on shear tab required in addition to web fillet welds for shear

Dissemination of information for training – Lisbon 10-11 February 2011

38

Design of connection IPE500 beamX – IPEA450beamY - HE340M column

Dissemination of information for training – Lisbon 10-11 February 2011

Design of bolted connection

Dissemination of information for training – Lisbon 10-11 February 2011

Dissemination of information for training – Lisbon 10-11 February 2011

41

<u>Design of end plate</u> Tension force $F_{tr,Rd}$ applied by one flange to end plate: $F_{tr,Rd} = M_{Rd} / (500-16) = 2213 \text{ kN}$

Virtual work 4 yield lines 4 $M_{pl,1,Rd} \ge \theta = F_{tr,Rd} \ge \theta \ge m$ *M*: distance bolt axis flange surface (70 mm)

Check of resistance of end plate and column flange to punching. $B_{p,Rd} > F_{tr,Rd}$? Check identical for end plate and column flange: same thickness 40 mm and $f_y = 355 \text{ N/mm}^2$ $F_{tr,Rd} = 553 \text{ kN}$ $B_{p,Rd}$ shear resistance punching out a cylinder diameter d_m head of the bolt =58 mm for M36 bolt t_p of plate = 40 mm $B_{p,Rd} = 0.6 \text{ m d}_m t_p f_u = 0.6 \text{ x}3.14 \text{ x}58 \text{ x}40 \text{ x}500 / 1.25 = 2185.10^3 \text{ N}$ = 2185 kN > 553 kN

Welds between end plates and beams

Butt welds

adequate preparation/execution (V grooves, welding from both side)

 \Rightarrow satisfy overstrength criterion => no calculation needed

Dissemination of information for training – Lisbon 10-11 February 2011

Dissemination of information for training – Lisbon 10-11 February 2011

Check of column web panel in transverse compression

$$F_{c,wc,Rd} = \omega k_{wc} b_{eff,c,wc} t_{wc} f_{y,wc} / \gamma_{M0}$$

setting ω and k_{wc} at 1,0
$$b_{eff,c,wc} = t_{fb} + 5(t_{fc} + s) = 16 + 5 (40 + 27) = 351 \text{ mm}$$

ignoring the connecting plates of beams in the y direction
$$F_{c,wc,Rd} = 351 \times 21 \times 355 = 2616. \quad 10^3 \text{ N} = 2616 \text{ kN} > F_{tr,Rd} = 2213 \text{ kN}$$

A more comprehensive check include connecting plates of beams in the y direction $b_{\text{eff,c,wc}} = t_{\text{fb}} + 5(t_{\text{fc}} + s) = 16 + 5 (40 + 27 + 40 + 40) = 751 \text{ mm}$

<u>Check of column web panel in transverse tension</u> $F_{c,wc,Rd} = \omega b_{eff,c,wc} t_{wc} f_{y,wc} / \gamma_{M0}$ identical to above, satisfied

Dissemination of information for training – Lisbon 10-11 February 2011

Comments on design options

Design governed by limitation of deflections:

- P-Δ design earthquake
- inter-storey drift service earthquake

Beam sections possess a safety margin for resistance to design EQ $M_{pl,Rd,beam} = 778 \text{ kNm} > M_{Ed} = 591 \text{ kNm}$ (worst case moment)

Reducing the beam sections locally by 'dogbones' or RBS

- change the structure stiffness by few %
- provide a reduction in the design moments and shear applied to the connections
- $M_{\rm pl,Rd,beam}$ could be reduced by 778/591 = 1,32
- \Rightarrow Reduce connection design moment $M_{\rm Ed, connection} = 1,1 \gamma_{\rm ov} M_{\rm pl,Rd, beam}$
- \Rightarrow reduce bolt diameters, end plate thickness...

At perimeter columns, reduction ratio $M_{pl,Rd,beam}$ / M_{Ed} = 1,61

Dissemination of information for training – Lisbon 10-11 February 2011

Influence of increase in flexibility due to RBS

Frame flexibility and θ increased:

- by estimated 7% (canadian code)
- can be computed

Revised amplification factors $1/(1 - \theta)$

	Interstore	y drift	amplification
Ctorey	sensitivity	coefficient θ	factor 1/ (1- θ)
Storey	Without	With RBS	With RBS
	RBS		
1	0,099	0,105	1,11
2	0,137	0,147	1,17
3	0,118	0,126	1,14
4	0,086	0,092	1
5	0,054	0,057	1
6	0,027	0,028	1

Influence of RBS distance to connection on design moment

a = 0,5 x *b* = 0,5 x 200 = 100 mm *s* = 0,65 x *d* = 0,65 x 500 = 325 mm

Distance RBS to column face a + s/2 = 162,5 + 100 = 262 mm

Bending moment ≈ linear between beam end -1/3 span 1/3 span = 8000 / 3 = 2666 mm

=> Design bending moment in RBS *M*_{d,RBS}=596x(2666–262)/2666= 537 kNm

Dissemination of information for training – Lisbon 10-11 February 2011

48

Definition of section cuts at RBS.c in the range 0,20b-0,25bc=0,22b= 44 mmIPE500 $W_{pl,y} f_y = 2194.10^3 \times 355 = 778$. 10^6 Nmm Flange moment: $b t_f f_y (d - t_f) = 16x200x355(500-16) = 549$. 10^6 Nmm Web moment: $t_w f_y (d - 2t_f)^2/4=10,2x355 (500 - 32)^2 = 198$. 10^6 Nmm Due to root radii web-flange junctions:(778-549-198) = 31. 10^6 Nmm

Plastic moment of reduced IPE500
 $b_e = b - 2c = 200 - 88 = 120$ mm.Reduced beam
sectionFlange moment: $b_e t_f f_y (d-t_f) = 16 \times 112 \times 355(500 - 16) = 308$. 10⁶ Nmm
RBS plastic moment: $M_{pl,Rd,RBS} = (308 + 198 + 31)10^6 = 537.10^6$ Nmm
For fabrication purposes: radius R of the cut
 $R = (4c^2 + s^2) / 8c = (4 \times 32^2 + 325^2)/(8 \times 32) = 857$ mm

Design moment and shear at the connection

 $V_{\text{Rd,connection}} \ge 448 \text{ kN}$ without RBS $V_{\text{Rd,connection}} \ge 368 \text{ kN}$ with RBS Reduction in design shear at connection = - 21%

Dissemination of information for training – Lisbon 10-11 February 2011

Illustration of Design 2

Composite Steel Concrete Moment Resisting Frame

Hughes SOMJA INSA Rennes

Hervé DEGEE University of Liege

André PLUMIER University of Liege

Dissemination of information for training – Lisbon 10-11 February 2011

5 storey building Height 17,5 m Slab thickness 120 mm

Design from RFCS project "OPUS"

4 desi	<u>gn cases</u>			
Seismicity		Beams	Columns	Steel
High	0,25g	Comp.	steel	S355
High	0,25g	Comp.	Comp.	S355
Low	0,10g	Comp.	steel	S235
Low	0,10g	Comp.	Comp.	S235

Slab: 5 kN/m2 F

Partitions: 3 kN/m

Variable Actions

Uniformly distributed loads: $q_k = 3 \text{ kN/m}^2$ Concentrated loads: $Q_k = 4 \text{ kN}$ Snow load altitude A = 1200 m q = 1.1 kN/m² Wind Load : $q_p(Z) = 1.4 \text{ kN/m}^2$

• Seismic Action $\gamma_1 = 1,00 \ a_{gR} = 0,25g \ 0,10g$ type 1 design spectrum soil B DCM q=4 Values of ψ factors

 $\psi_0 = 0.7$ $\psi_1 = 0.5$ $\psi_2 = 0.3$

Dissemination of information for training – Lisbon 10-11 February 2011

53

- Seismic Mass of the Building $G_k + \psi_{Ei}Q_k$
 - $\psi_{Ei} = \phi \psi_{2i}$ $\psi_{2i} = 0.3$ $\phi = 1$ Clause 4.2.4 and table 4.2 of French NF
 - $G = G_{slab} + G_{walls} + G_{steel} + G_{concrete}$

$$\mathbf{Q} = \mathbf{Q}_{\text{imposed}} + \mathbf{Q}_{\text{snow}}$$

	Case1	Case2	Case3	Case4
Seismic mass (t)	1900	1963	1916	1994

• Seismic Base Shear by Lateral Force Method $F_b = m * S_d (T_1) * \lambda$ $F_b = 1963 * 0.535 * 0.85$

 $F_{b} = 892 \text{ kN}$ Base shear F_{bx} on each MR frame $F_{bx} = \frac{F_{b}}{5} = \frac{892}{5} = 178.4 \text{ kN}$ Torsion effect $\delta = 1+0.6 * \frac{x}{L}$ $\delta = 1.3$ $F_{bxt} = \delta * F_{bx}$ $F_{bxt} = 1.3 * 178.4$ $F_{bxt} = 232 \text{ kN}$

• **Distribution of seismic loads**

Seismic static	Case	Case	Case	Case
equivalent forces	1	2	3	4
E1 (kN)	15.7	15.5	7.7	7.7
E2 (kN)	31.4	30.9	15.4	15.3
E3 (kN)	47.1	46.4	23.1	23.0
E4 (kN)	62.8	61.9	30.8	30.7
E5 (kN)	78.5	77.3	38.5	38.3

55

Combinations at ULS considered in the analysis for an office building

- 1.35G + 1.5W + 1.05Q + 0.75S 1.35G + 1.5W + 1.05S + 0.75Q 1.35G + 1.5Q + 1.05W + 0.75S 1.35G + 1.5Q + 1.05S + 0.75W 1.35G + 1.5W + 1.05(S + Q)1.35G + 1.5(S + Q) + 1.05W
- Seismic Design Situation

 $G_{\rm k} + \psi_2 Q_{\rm k} + E$ with $\psi_2 = 0.3$

G : Dead load Q : Imposed load S : Snow load W: Wind load

Dissemination of information for training – Lisbon 10-11 February 2011

- 1. Structural Analysis & Design
 - **Action effects Internal stresses**
 - **Second-Order Effects**
 - **Global and Local Ductility Condition**
- 2. Damage Limitation checks
- 3. Section and Stability Checks of
- Composite Beams
- **Steel Columns**
- **Composite Columns**

Dissemination	of information for train	ning – Lisbon 10-11 Fel	bruary 2011						57
4 desi	i <u>gn</u>				T simpl	Sd(T)	Т	Sd(T)	Seismic
					EC8(s)	EC8	Exact	Exact	mass
Seism	nicity	Beams	Columns	Steel		m/s²	(s)	m/s²	t
High	0,25g	Comp.	steel	S355	0,727	1,26	1,64	0,56	1900
High	0,25g	Comp.	Comp.	S355	0,727	1,26	1,72	0,56	1963
low	0 10a	Comp	steel	S235	0 727	0.51	1 35	0 27	1916
	0,109	comp.		0200	• - • -	0,01	1,00	•,21	
Low	0,10g	Comp.	Comp.	S235	0,727	0,51	1,41	0,27	1994
	$\frac{1.96 \ m/s^2}{1.84 \ m/s^2}$ $\frac{1.265 \ m/s^2}{0.8 \ m/s^2}$ $\frac{0.736 \ m/s^2}{0.5 \ m/s^2}$ $\frac{0.2 \ m/s^2}{0.2 \ m/s^2}$	$T_{s} = 0.15 s$ $T_{c} = 0.5 s$	seismicity T = 1.85 s	$T_{p} = 2 s$	$C_1 = C_t * H$ $C_1 = 0.727s$	r(S)			

58

d

x

• An equivalent I_{eq} constant over span may be used: $I_{eq} = 0.6 I_1 + 0.4 I_2$

 For composite columns: (EI)_c = 0,9(EI_a + r E_{cm} I_c + E I_s) E : steel E_{cm} : concrete r a reduction factor r = 0,5. I_a, I_c and I_s : I of steel section, concrete and re-bars respectively

b₀ distance between centres of the outstand shear connectors and it is assumed to be Zero in our example.

 \mathbf{b}_{ei} effective width of concrete flange on each side of the web

= L_e / 8 not greater than width b_i

$$b_{eff} = b_0 + \sum b_{ei}$$

$$b_{eff} = \begin{cases} 1225 \ mm \ (at mid-span) \\ 875 \ mm \ (at an end support) \end{cases}$$

Effective WidthSeismicEurocode 8-1Effective width b_{eff} concreteflange: $b_{e1} + b_{e2}$ Partial effective widths b_e in Tables, not $\geq b_1 \& b_2$

- 2 Tables. Determination of
- Elastic stiffness: I
- Plastic resistance M_{pl}

M inducing compression in slab: +

tension

Dissemination of information for training – Lisbon 10-11 February 2011

EC8 Table	be	Transv	erse element	$b_{\rm e}$ for I (Elastic Analysis)	
Partial effective width b	At interior colum	n Presen	t or not present	For negative $M: 0,05 l$	
of alab	At exterior colum	nn Presen	t	For positive <i>M</i> : 0,0375	51
	At avtariar colum	Not pr	esent,	For negative <i>M</i> : 0	
for computation of I	At exterior colum	or re-b	ars not anchored	For positive <i>M</i> : 0,025	l
used in elastic analysis	Sign of bending moment M	Location	Transverse element		$b_{\rm e}$ for $M_{\rm Rd}$ (Plastic resistance)
	Negative M	Interior column	Seismic re-bars		0,1 <i>l</i>
EC8 Table	Negative M	Exterior column	All layouts with re-beam or to concrete	0,1 <i>l</i>	
Partial effective width b_e	Negative M	Exterior column	All layouts with re-bars not anchored to 0,0 façade beam or to concrete cantilever edge strip		0,0
of slad for ovaluation of	Positive M	Interior column	Seismic re-bars	0,075 <i>l</i>	
plastic moment M _{pl}	Positive M	Exterior column	Steel transverse bear Concrete slab up to of H section with str Figure 63 or beyond Seismic re-bars	Steel transverse beam with connectors. Concrete slab up to exterior face of column of H section with strong axis oriented as in Figure 63 or beyond (concrete edge strip). Seismic re-bars	
	Positive M	Exterior column	No steel transverse beam or steel transverse $b_b/2 + b_{bam}$ without connectors. Concrete slab up to exterior face of column of H section with strong axis oriented as in Figure 63, or beyond (edge strip).		$b_{\rm b}/2$ +0,7 $h_{\rm c}/2$
	Positive M	Exterior column	All other layouts. Se	$b_{b/2} \leq b_{e,max}$ $b_{e,max} = 0.05l$	

Effective slab width	For Positive Moment	For Negative Moment
b _{eff} (mm) at column	M _{pl,Rd} ⁺	M _{pl,Rd} -
EC4	Not defined	875 mm
EC8 Elastic analysis	525 mm	700 mm
EC8 Plastic Moments	1050 mm	1400 mm

Dissemination of information for training – Lisbon 10-11 February 2011

64

 Remark

 Favourable influence of concrete encasement on local ductility.

 Concrete:
 - prevents inward local buckling of the steel walls

 - reduces strength degradation

 => Limits c/t of wall slenderness of composite sections

 > those for pure steel sections

 Increase up to 50% if:

confining hoops

fully encased sections

additional straight bars welded to inside of flanges

for partially encased sections

Dissemination of information for training – Lisbon 10-11 February 2011

S	S	S	S	S	S	S	V	

Ductility Class of Structure	DCM	DCM		
Reference value of behaviour factor <i>q</i>	$1,5 < q \le 2$	$2 < q \leq 4$	<i>q</i> > 4	
<u>FLANGE outstand limits</u> $c/t_{\rm f}$				
Reference: H or I Section in steel only				
EN1993-1-1:2004 Table 5.2	14 <i>ε</i>	10 <i>ε</i>	9 <i>E</i>	
<u>FLANGE outstand limits</u> $c/t_{\rm f}$				
H or I Section, partially encased,				
with connection of concrete to web				
as in Figure 57 b) or by welded studs.				
EN1994-1-1:2004 Table 5.2	20 E	14 ε	9 <i>E</i>	
<u>FLANGE outstand limits</u> $c/t_{\rm f}$				
H or I Section, partially encased				
+ straight links as in Figure 57 a) placed				
with $s/c \le 0.5$	20 -	21 -	12.5 -	
EN1998-1-1:2004	30 E	21 8	13,5 8	
<u>FLANGE outstand limits</u> $C/t_{\rm f}$				
+ being placed with $s/s < 0.5$				
+ noops placed with $3/c \ge 0.5$ EN1998-1-1.2004	30 €	21 €	135 €	
WFB depth to thickness limit $c_{1/t}$	500	210	15,5 0	
$\frac{w_{LD}}{c} \frac{t}{t} = h - 2t_c$				
Reference: H or I Section in steel only				
web completely in compression				
EN1993-1-1:2004 Table 5.2	42ε	38 E	33 E	
WEB depth to thickness limit c_w/t_w				
H or I Section, web completely in				
compression, section partially encased				
with connection of concrete to web or fully				
encased with hoops.				
EN1993-1-1:2004 Table 5.2				
EN1994-1-1, cl.5.5.3(3)	388	38 E	33 E	

Dissemination of information for training – Lisbon 10-11 February 2011

66

Condition 2 for local ductility in plastic hinges H steel profile + slab Steel yields: $\varepsilon > \varepsilon_y$ Concrete remain elastic: $\varepsilon < \varepsilon_{cu2}$ \Rightarrow a condition on the position of the plastic neutral axis:

 $x / d < \varepsilon_{cu2} / (\varepsilon_{cu2} + \varepsilon_a)$

x distance from top concrete compression fibre to plastic neutral axis

d depth of composite section ε_a total strain in steel at ULS

Limiting values of x/d for ductility of composite beams with slab

Ductility class	q	$f_{\rm y}$ (N/mm ²)	<i>x/d</i> upper limit
DCM	$1,5 < q \le 4$	355	0,27
	$1,5 < q \le 4$	235	0,36
	q > 4	355	0,20
DCII	q > 4	235	0,27

Dissemination of information for training – Lisbon 10-11 February 2011

Analysis

Blue: with steel column Red: with composite column

All beams are composite

Dissemination of information for training – Lisbon 10-11 February 2011

Results of analysis Example

Axial force diagram N_{max} = 1980 kN

Bending moment diagram M_{z,max} = 319 kNm

High seismicity – steel columns

Dissemination of information for training – Lisbon 10-11 February 2011

EC8 check **Resistance of dissipative zones** Check: plastic hinges at beam ends $M_{pl,Rd}^+ \ge M_{Ed}^+$ $M_{pl,Rd} \ge M_{Fd}$ $M_{pl,Rd}^{-} = W_{plb} * f_{y}$ $M^{-} = \begin{cases} 342 \text{ kN.m (IPE330)} \\ 317 \text{ kN.m (IPE360)} \end{cases}$ Ω_{min} Maximum "work rate" $M_{pl,Rd}^{+} = W_{plb} * f_{y}$ $M^{+} = \begin{cases} 495 \text{ kN.m (IPE330)} \\ 415 \text{ kN.m (IPE360)} \end{cases}$ in beams: M_{Ed} /M_{pl,Rd} Static Seismic $\Omega_{\min} =$ Actions Actions $M_{pl,Rd} / M_{Ed}$ **(EC4) (EC8)** Case 1 : high seismicity (steel columns) 0.933 0.826 1,21 Case 2 : high seismicity (composite columns) 0.953 0.840 1,19 Case 3 : low seismicity (steel columns) 0.979 0.764 1,31 Case 4 : low seismicity composite columns) 1.000 0.779 1.28

=> Limited overstrength Ω_{min}

EC8 check Second order effects

$$\theta = \frac{P_{tot} * d_r}{V_{tot} * h} \le 0.1$$

Example High seismicity – steel columns

Storey N°.	d _e [m]	[m]	V [kN]	V _{tot} [kN]	P _{tot} [kN]	θ
1	0.007	0.007	15.70	235.48	3799.96	0.032
2	0.019	0.012	31.40	219.78	3046.62	0.048
3	0.030	0.011	47.10	188.38	2293.28	0.038
4	0.038	0.008	62.79	141.28	1539.94	0.025
5	0.044	0.006	78.49	78.49	786.60	0.017

=> All θ < 0,10

Dissemination of information for training – Lisbon 10-11 February 2011

EC8 check Damage limitations in non-structural elements

$d_r * v \le 0.010h$ with $dr = q * d_r^e$ q=4 v=0,5

	d _r * v	(mm)			
Storey	Case 1	Case 2	Case 3	Case 4	0,010 h (mm)
1	14	16	4	4	35
2	24	26	8	10	35
3	22	22	8	6	35
4	16	18	6	6	35
5	12	10	4	6	35

All d_r < 0,10h=> OK
Dissemination of information for training – Lisbon 10-11 February 2011

Elements checks Action effects to consider are:

They take into account:

- Section overstrength $\Omega = M_{pl,Rd} / M_{Ed}$
- Material overstrength $f_{y,real} / f_{y,nominal} = \gamma_{ov}$ $\Omega = \min_{i} \left\{ \Omega_{i} = M_{pl,Rd,i} / |M_{Ed}|_{max,i} \right\}$

$$\Omega = \frac{393}{324.20} = 1.212 \text{ (Case1)}$$
$$\Omega = \frac{337}{257.00} = 1.311 \text{ (Case3)}$$

 $N_{\rm Ed} = N_{\rm Ed G} + 1, 1\gamma_{\rm ov} \Omega N_{\rm Ed E}$

 $M_{\rm Ed} = M_{\rm Ed,G} + 1,1\gamma_{\rm ov} \Omega M_{\rm Ed,E}$

 $V_{\rm Ed} = V_{\rm Ed G} + 1, 1 \gamma_{\rm ov} \Omega V_{\rm Ed E}$

CHECKS

Beam deflections

$$f = \frac{W_u L^4}{384EI} + \frac{W_p L^3}{192EI} = \frac{L}{300}$$

Resistance of beams to Lateral-Torsional Buckling

$$M_{cr} = \frac{k_c C_4}{L} \left[\left(GI_{at} + \frac{k_s L^2}{\pi^2} \right) E_a I_{afz} \right]^{0.5}$$

Real risk: $|M_{Ed}|_{max} > M_{b,Rd}$

 \Rightarrow Bracings required

 \Rightarrow Calculation indicate 1 m interdistance OK

Limitation of compression in beams

$$N_{Pl,Rd} = A_a * f_y + \frac{f_{sk} * A_s}{\gamma_s} + 0.85 * \frac{f_{ck} * A_c}{\gamma_c} \qquad \text{check: } \frac{N_{Ed}}{N_{pl,Rd}} \le 0.15$$

$$N_{Pl,Rd} = \begin{cases} 5767 \text{ kN (IPE330)} \\ 4708 \text{ kN (IPE360)} \end{cases} |N_{Ed}|_{\max} = \begin{cases} 149 \text{ kN } < 0.15 \text{ } N_{Pl,Rd} = 865 \text{ kN (Case1)} \\ 142 \text{ kN } < 0.15 \text{ } N_{Pl,Rd} = 865 \text{ kN (Case2)} \\ 127 \text{ kN } < 0.15 \text{ } N_{Pl,Rd} = 706 \text{ kN (Case3)} \\ 121 \text{ kN } < 0.15 \text{ } N_{Pl,Rd} = 706 \text{ kN (Case4)} \end{cases}$$

Dissemination of information for training – Lisbon 10-11 February 2011

Limitation of shear in beams

 $|V_{Ed}|_{\text{max}} = \begin{cases} 234 \text{ kN } < 0.5V_{Pl,a,Rd} = 315.5 \text{ kN (Case1)} \\ 237 \text{ kN } < 0.5V_{Pl,a,Rd} = 315.5 \text{ kN (Case2)} \\ 231 \text{ kN } < 0.5V_{Pl,a,Rd} = 238.5 \text{ kN (Case3)} \\ 234 \text{ kN } < 0.5V_{Pl,a,Rd} = 238.5 \text{ kN (Case4)} \end{cases}$

Resistance of columns under combined compression and bending
in seismic design situation $M_{Ed} \leq M_{N,Rd}$

Example: High seismicity, steel columns

case 1		N _{Ed,G}	M _{Ed,G}	N _{Ed,E}	M _{Ed,E}	N_{Ed}^{*}	$\mathbf{M}^{*}_{\mathbf{Ed}}$	M _{N,y,Rd}
	End	kN	kNm	kN	kNm	kN	kNm	kNm
column 1	lower	-814	-41	119	140	-616	192	751
column	upper	-810	79	119	-39	-612	14	751
column 2	lower	-1652	1	-9	158	-1666	264	574
	upper	-1648	-3	-9	-76	-1663	-130	574
column 3	lower	-1652	-1	8	158	-1638	262	578
column 5	upper	-1648	3	8	-76	-1634	-124	579
column 4	lower	-814	41	-118	138	-1011	272	684
	upper	-810	-79	-118	-39	-1007	-143	685

Dissemination of information for training – Lisbon 10-11 February 2011

76

Shear Resistance of Steel Columns

Example: case 1, high seismicity, steel columns

$$\begin{aligned} \|V_{Ed,G}\|_{\max} &= 57.54 \text{ kN} \\ \|V_{Ed,E}\|_{\max} &= \frac{1}{1-\theta} * 39.96 = \frac{1}{1-0.048} * 39.96 \\ &= 1.05 * 39.96 = 41.80 \text{ kN} \\ \|V_{Ed}^*\|_{\max} &= \|V_{Ed,G} + 1, 1\gamma_{ov} \Omega V_{Ed,E}\|_{\max} \\ \|V_{Ed}^*\|_{\max} &= 127.47 \text{ kN} \\ \|V_{Ed}^*\|_{\max} &= 127.47 \text{ kN} \\ \end{aligned}$$

Dissemination of information for training – Lisbon 10-11 February 2011

Column buckling

Buckling length = storey height

Reduction fa	ctors x for	Flexural	Buckling
--------------	--------------------	----------	----------

	$\overline{\lambda}_{\mathrm{y}}$	Xy	$\overline{\lambda}_z$	Xz
Case 1	0.308	0.961	0.632	0.766
Case 3	0.202	1.000	0.524	0.873

Interaction factors k_{yy} and k_{zz} for uneven moments at column ends

$$\mathbf{k}_{yy} = \mathbf{C}_{my} \left[1 + \left(\overline{\lambda}_{y} - 0, 2 \right) \frac{\left| \mathbf{N}_{Ed}^{*} \right|}{\chi_{y} \mathbf{N}_{plRd}} \right]$$

Reduction Factor for Lateral Torsional-Buckling

Stability checks

$$\frac{\left|N_{Ed}^{*}\right|}{\chi_{y}N_{plRd}} + k_{yy}\frac{\left|M_{y,Ed}^{*}\right|_{\max}}{\chi_{LT}M_{plRd}} \leq 1$$
$$\frac{\left|N_{Ed}^{*}\right|}{\chi_{z}N_{plRd}} + k_{zy}\frac{\left|M_{y,Ed}^{*}\right|_{\max}}{\chi_{LT}M_{plRd}} \leq 1$$

Additional aspects for composite columns

- Spacing of reinforcing steel bars
- Local buckling => section class

- Resistance of composite columns in bending can consider concrete and rebars Longitudinal shear to check at steel concrete interface
- Resistance of composite sections in compression can consider concrete and rebars
- Shear resistance of composite sections In dissipative zones: only the shear resistance of the steel profile
- Second order effects in composite columns (static combination)

79

Dissemination of information for training – Lisbon 10-11 February 2011

Beam to column connection

In the beam column connection zone of beams (=dissipative zones) specific reinforcement of the slab: "Seismic Re-bars" (EC8 Annex C)

The connection of the steel beam to the column: a full strength steel connection: can be that of steel MRF example

Dissemination of information for training – Lisbon 10-11 February 2011

Ispra test 1999

Dissemination of information for training – Lisbon 10-11 February 2011

83

Design to transmit slab compression/tension force IPE330 beam HEA360 column t_{slab}=120mm $B_{eff}^{+}= 1050 mm$ $B_{eff}^{+}= 1400 mm$ Rebars: S500 T12@200 – 2 layers A_{sl}=14x113=1582 mm² F_{Rds}=791 kN Concrete: C30/37 F_{cd}=30/1,5=20 MPa F_{Rdc}=120x1050x20=2520 kN **F**_{Rds} and **F**_{Rdc} are the slab force in tension and compression They are transmitted to the column to transmit the beam composite plastic moments M_{pl}+ & M_{pl}-(Ti G: **Facade beam-column connection M** $b_{\rm eff}$ E $M \le 0$ D Each rebar: 113 mm² x500 = 56,5kN 1 stud/rebar 1 stud Φ19=81,6kN>56,5

84

Dissemination of information for training - Lisbon 10-11 February 2011

 With cover plate t=16mm welded on top of IPE330 beam

 $M_{pIRd} = 16x315^2x355/4=140 \text{ kNm}$ >108

 $V_{pIRd} = 16x315x205=1033\text{kN}$ > 571

 Interaction M-N
 $\rho=(2x571/1033-1)^2=0,01$

 => M_{pIRd} unchanged
 OK

Dissemination of information for training - Lisbon 10-11 February 2011

Interior beam-column connection

- not possible ► increase F_{Rd2}
- ▶ increase F_{Rd3}
- => more studs
 - For **791** kN => 791/81,6 =10 studs 5 each side
- + cover plate with increased M_{plRd}&V_{plRd}
- design should consider beams present in 2 directions
- some other constraints may bring part of the solution

Example:

- increased flange width is anyway part of the design for connection to column weak axis
- connecting plates bring frontal surface within slab thickness allowing to reduce the number of connectors

Dissemination of information for training – Lisbon 10-11 February 2011

88

Interior beam-column connection

« Seismic rebars »

F_{Rd2} and A_T = 4T16 unchanged

placed on both sides (moment reversal)

89

Dissemination of information for training – Lisbon 10-11 February 2011

Some other aspects

of Seismic Design

of Composite Steel Concrete Structures

Dissemination of information for training – Lisbon 10-11 February 2011

Structural Types

- Moment resisting frames
- Frames with concentric bracing
- Frames with eccentric bracings

Specific

- Composite wall structures Type 1 and 2
- Mixed systems Type 3 = Concrete walls/columns.

Steel or composite beams

Composite steel plate shear walls

Dissemination of information for training – Lisbon 10-11 February 2011

91

A choice in the design: the degree of composite 'character'

- ▶ 1. Ductile composite elements/connections
- 2. Ductile steel sections, no input of concrete to resistance of dissipative zones
- **Option 2 ease analysis & execution**
 - but requires effective disconnection of concrete from steel in potential dissipative zones
 - => correspondence between model and reality

Underestimating stiffness: $T \uparrow =>$ smaller action effectsUnderestimating resistance:capacity designed may be incorrect=> Risk of failure in the wrong places

Composite connections in dissipative zones Transfer of bending moment and shear from beam to RC column

Not treated in EC4

Realised by couple of vertical reactions in concrete Should be checked:

- Capacity of column to bear locally those forces without crushing => confining (transverse) reinforcement + "face bearing plates"
- Capacity of column to resist locally tension mobilised by vertical forces
- => vertical reinforcements with strength equal to shear in beam confinement by transverse reinforcement design like RC
 - + face bearing plates B
- A steel beam
- **B** face bearing plates
- C reinforced concrete column

Composite frames with eccentric bracings

- Uncertainties with composite components in EBF's:

 capacity at large deformations (rotations up to 80 mrad)
 'disconnection' of the slab
 contribution of slab in bending at rotations up to 80 mrad

 Design: dissipative behaviour through yielding in shear of the links
 - contribution of slab to shear resistance negligible => Links should be short or intermediate length

Links may not be encased steel sections uncertainties about concrete contribution to shear resistance

Vertical steel links: OK

Dissemination of information for training – Lisbon 10-11 February 2011

Dissemination of information for training – Lisbon 10-11 February 2011

Composite Frame with Eccentric and Concentric Steel Bracings

Hervé DEGEE

University of Liege

95

André PLUMIER University of Liege

Dissemination of information for training – Lisbon 10-11 February 2011

Definition of the structure

Dimensions	Symbol	Value
Storey height	h	3.5 m
Total height of the building	Н	17.5 m
Beam length in X-direction EBF	ا _X	7 m
Beam length in Y-direction CBF	l _Y	6 m
Building width in X-direction	L _X	21 m
Building width in Y-direction	L _Y	24 m

X-direction – Eccentric bracings

Y-direction – Concentric bracings

Details of values						
Dimensions	Symbol	Value	Units			
Characteristic yield strength of reinforcing steel	f _v	500	N/mm ²			
Partial safety factor for steel rebars	Ϋ́s	1.15				
Design yield strength of reinforcement steel	f _{vd}	434.78	N/mm ²			
Characteristic compressive strength of concrete	f _c	30	N/mm ²			
Partial safety factor for concrete	Υ _c	1.5				
Design compressive strength of concrete	𝕇 _{cd}	20	N/mm ²			
Secant modulus of elasticity of concrete for the design under gravity loads combinations	E _c	33000	N/mm²			
Secant modulus of elasticity of concrete for the design under seismic loads combination	E _{c,sc}	16500	N/mm²			
Characteristic yield strength of steel profile	f _v	355	N/mm ²			
Partial factor for steel profile		1				
Modulus of elasticity of steel profile	Ea	210000	N/mm ²			

Dissemination of information for training – Lisbon 10-11 February 2011

Earthquake action Design ground acceleration 0.25g soil type B type 1 response spectrum DCM design with a behaviour factor q = 4

Type 1 response spectrum - soil type B						
Dimensions	Symbol	Value	Units			
Soil factor	S	1.2				
Lower limit of period of constant spectral acceleration branch	Τ _B	0.15	S			
Upper limit of period of constant spectral acceleration branch	T _c	0.5	S			
Beginning of the constant displacement response range T _D 2						

Loads Permanent actions + self-weight of the slab $G = 5.858 \text{ kN/m}^2$ Variable actions $Q = 3kN/m^2$ $S = 1.11 \text{ kN/m}^2$ Snow Wind $W = 1.4 \text{ kN/m}^2$ Static loading combinations: 1.35G + 1.5 W + 1.5 (0.7Q + 0.5S) 1. 2. 1.35G + 1.5 Q + 1.5 (0.7W + 0.5S) 1.35G + 1.5 Q + 1.5 (0.7S + 0.5W)3. 1.35G + 1.5S + 1.5(0.7Q + 0.5W)4. 5. 1.35G + 1.5 S + 1.5 (0.7W + 0.5Q) 6. 1.35G + 1.5 W + 0.7*1.5 (Q + S) 7. 1.35G + 1.5 (Q + S) + 0.7*1.5 (W)

<u>Steps</u>	
Genera	al. Design of slab under gravity loads (no support of EBF)
	Design of columns under gravity loads (no support of EBF)
	Design of beams under gravity loads (no support of EBF)
	Not presented – available in text l
	Torsion effects
EBF	2 nd order effects P-Δ
	Design of eccentric bracings under seismic combination of
	loads including torsion and P- Δ
	Check of beams and of eccentric bracings under gravity loads
	with EBF as support to the beam
	Design of one link connection
CBF	Design of concentric bracings under seismic combination of
	loads including torsion and P- Δ
	Check of beams and columns
	Design of one diagonal connection
Check	of diaphragm
Check	of secondary elements

101

Final design

Composite aspect	Reinforced of	concrete slab thickness = 18 cm
	Composite b	eam steel profiles: IPE 270
Columns	HE 260 B	HE 280 B
Concentric bracings:	2 UPE	
Eccentric bracings:	HE	

Seismic mass: 1744 tons Fundamental periods $T_x = 0.83$ s $T_y = 1.45$ s

Beams considered composite in main span Slab not connected to columns=> no composite moment frame

=> Primary resisting system = bracings Secondary: moment frames

<u>Slab</u>

slab thickness = 180 mm cover = 20 mm

Characteristics of slabs								
		X-direction						
	Applied moment M _{Ed,slab,X,GC}	Resistant moment M _{Rd,slab,X}	Rebars for 1m of slab	Steel Section A _{s,X}	Spacing of rebars			
Unit	[kNm/m]	[kNm/m]	[mm]	[mm²/m]	[mm]			
SPAN (lower layer of rebars)	66	73	10 T10 + 2 T16	1187	100 – 50			
SUPPORT (upper layer of rebars)	92	95	10 T10 + 4 T16	1585	100 – 50			
	Y-direction							
SPAN (lower layer of rebars)	35	49	10 T10	785	100			
SUPPORT (upper layer of rebars)	41	49	10 T10	785	100			

104

Short links Stiffer structure Plastic deformation are in shear of the web: bigh ductility, no wolds

- high ductility, no welds,
- lateral buckling minor problem

■ Long links More flexible structure Plastic hinges in bending → flange buckling & lateral buckling

Examples of frames with eccentric bracing e = length of seismic link

Dissemination of information for training – Lisbon 10-11 February 2011

• $V_{p,link}$ include V-N interaction If N_{ed} / N_{pl,Rd} < 0,15 => $V_{p,link,r} = V_{p,link} \left[1 - (N_{Ed} / N_{pl,Rd})^2 \right]^{0.5}$ • Homogeneity of links overstrength

$$\Omega_{\rm i}$$
 = 1,5 $V_{\rm p,link,i}$ / $V_{\rm Ed,i}$

Section overstrength Ω refers to shear because the link is dissipative in shear

1,5: for high deformations => high strain hardening

 $\Omega_{\max} \leq 1,25 \ \Omega_{\min}$

Results of analysis + profiles selected for the links

Level	Link	N _{Ed}	N _{Ed} /N _{pl}	M _{Ed}	M _{pl}	M _{Ed} /M _{pl}	V_{Ed}	V _{pl}	Ω=
	section	kN		kNm	kNm		kN	kN	1,5 V _{pl} /V _{Ed}
1	HE450B	75	0,010	285	1141	0,25	950	1182	1,867
2	HE450B	75	0,010	296	1141	0,25	987	1182	1,797
3	HE400B	72	0,011	247	933	0,26	824	1011	1,840
4	HE340B	72	0,011	195	708	0,27	651	761	1,752
5	HE280B	70	0,015	123	455	0,27	405	547	2,028

 Ω_{max} =2,03 \leq 1,25 Ω_{min} =1,25x1,752=2,19 => OK

N_{ed}/ N_{pl,Rd}< 0,15

106

• Beams, columns, diagonals and connections

Capacity designed relative to the real strengths of the seismic links $N_{\text{Rd}} (M_{\text{Ed}}, V_{\text{Ed}}) \ge N_{\text{Ed},\text{G}} + 1,1 \gamma_{\text{ov}} \Omega N_{\text{Ed},\text{E}}$ $E_{\text{d}} \ge E_{\text{d},\text{G}} + 1,1 \gamma_{\text{ov}} \Omega_{\text{i}} E_{\text{d},\text{E}}$ Including torsion effect in $N_{\text{Ed},\text{E}}$ by factor $\delta = 1 + 0,6 \text{ x/L} = 1,3$ $N_{\text{Rd}} (M_{\text{Ed}}, V_{\text{Ed}}) \ge N_{\text{Ed},\text{G}} + 1,1 \gamma_{\text{ov}} \Omega \delta N_{\text{Ed},\text{E}}$

• **Diagonals**

Max axial loads $N_{Ed,G} = 47.4 \text{ kN}$ $N_{Ed,E} = 495.2 \text{ kN}$

 $N_{Rd} \ge 47.4 + 1,1 \times 1,25 \times 1,75 \times 495,2 = 1612 \text{ kN}$

Resistance of diagonal to buckling (weak axis): 1963 kN =>OK

Action effects and plastic resistance of link

Action effects	Plastic resistance	Section	
From analysis	With f _v =355 MPa	overstrength Ω* **	
V _{Ed} =950 kN	V _{pl,Rd} = 1182 kN	1182/952 =1,24	
M _{Ed} =285 kNm	M _{pl,Rd} = 1141 kNm		$M_{Ed}/M_{pl,Rd} = 0,25$
N _{Ed} =75 kN	N _{pl,Rd} = 7739 kN		$N_{Ed}/N_{pl,Rd} = 0.01$

Section overstrength Ω refers to shear => link dissipative in shear *

** Connection design made with $\Omega = 1,24$

Note: to revise! Should be $\Omega = 1,5 \times 1,24 = 1,86$

 $\frac{\text{Connection IPE270 beam - HEB450 link}}{V_{\text{Ed, connection}} = 1,1 \gamma_{ov} V_{pl,Rd}}$

 $= 1,1 \times 1,25 \times 1182 = 1625 \text{ kN}$

Bolts

6 M30 bolts, 2 shear planes:

V_{Rd}=2x6x280/1,25 = 2688 kN > 1625

- HEB450 web Thickness t_w=14 mm
 Bearing resistance with e₁ = 60 mm, e₂ = 50 mm, p₁ = p₂ = 85 mm
 V_{Rd} = 2028 kN > 1625 kN
- Bearing resistance < bolt shear resistance
 2688 kN > 1,2 x 2028 kN = 2433 kN
- Gussets welded on IPE270 lower flange

2 plates t=16 mm τ =1625. 10³/(2 x 16 x 320)=180 < 355/ $\sqrt{3}$ =204 MPa

Total thickness provided = 32 mm > t_{w,HEB450} =14 mm => all checks

• IPE270 web stiffeners

t_w=6,6 mm is not enough => 2 plates t=6mm welded on IPE270 flanges Provide total thickness 6,6 +6+6=18,6mm > t_{w, HEB450}=14 mm => all checks

Dissemination of information for training – Lisbon 10-11 February 2011

OK for 881 kNm taking into account excess of resistance of web bolts

V_{Ed, connection} taken by M30 bolts, single shear plane 8 M30 bolts provide shear resistance 8x280,5/1,25 =1795 kN > 1625 kN Bearing resistance: 8 x 289,8 x 1,4 = 3245 kN > 1625 kN

Dissemination of information for training – Lisbon 10-11 February 2011

112

Welded connection between HEB450 and end plateAs above: $V_{Ed, connection} = 1625 kN$ $M_{Ed, connection} = 485 kN$ $V_{Ed, connection}$ taken by the web.Weld length = 2 x 400 = 800 mma=8mm fillet weld provides a resistance:(8 x 261,7)/1,25=1674 kN > 1625 kN

 $M_{Ed, \text{ connection}}$ = 485 kN taken by the flanges. Weld length = 2 x 300 = 600 mm/flange

Tension force in flange = 485/ (2 x 0,2m)=1214 kN => 202 kN/100 mm An a=8 mm fillet weld provides a resistance: 6 x261,7 /1,25= 1256 kN > 1214 kN

Dissemination of information for training – Lisbon 10-11 February 2011

Connection of HEB240 diagonals to welded built up triangle $N_{Ed, 1 \text{ diagonal}} = N_{Ed, \text{ gravity}} + 1,1 \gamma_{ov} N_{Ed,E}$ 1612 kN N_{pl,Rd} 10600x355= 3763 kN $N_{Ed}/N_{pl.Rd} = 0.43$ M_{Ed, 1 diagonal} = 0,5 x link moment due to equilibrium of node => M_{Ed, 1 diagonal} = 285/2 = 143 kNm $M_{pl,Rd} = 1053.\ 10^3 \times 355 = 373 \text{ kN}$ $M_{Ed}/M_{pl,Rd} = 0.38$ Stresses in tension & bending k 8 relatively high \Rightarrow connection with full penetration butt welds HEB 240

Dissemination of information for training – Lisbon 10-11 February 2011

Concentric Bracing CBF

 Global plastic mechanism with diagonals or their connection as dissipative zones.

No buckling or yielding of beams and columns.

a) Global plastic mechanism the design objective for frames with X bracings.
b) Storey mechanism prevented by the resistance homogenisation condition for the diagonals.
c)Buckling of columns Prevented by capacity design

Diagonals should have

- similar force-displacement characteristics in both directions
- homogeneity of diagonal sections overstrength $\Omega_i = N_{pl,Rdi}/N_{Edi}$
- Symetry of bracings at each level:

A+ et A-, area of projections of sections comply with

Elastic range: compression and tension diagonals contribute equally to stiffness and resistance

Ist buckling: degradation in behaviour of compression diagonal

Behaviour evolution with cycles

EC8: 2 different design approach

- X bracings: tension diagonals only
- V or Λ bracings: compression and tension diagonals

New solutions to avoid problems with analysis

- dissipative connections with *R*fy < Rbuckling, diagonals
- special design of diagonals (Buckling Restrained Bracings -BRB)

Dissemination of information for training - Lisbon 10-11 February 2011

Standard analysis: only tension diagonals participate in resistance

Gravity loading Beams and columns in the model No diagonal Seismic action Beams and columns + tension diagonals in the model

- $N_{\text{pl,Rd}} \ge N_{\text{Ed,E}}$
- 1.3 < λ ≤ 2.0 (not for structures up to 2 levels)
- $\Omega_i = N_{Rd}/N_{ed}$ $\Omega_{max} \le 1,25 \ \Omega_{min}$

Dissemination of information for training – Lisbon 10-11 February 2011

117

• 1,3 < $\bar{\lambda} \le 2,0$ Why? Design does not include the compression diagonals. Reality does. Max initial resistance of X brace V_{ini} up to 1st buckling of diagonals should be: $V_{\text{ini}} \leq V_{\text{pl,Rd}}$ $V_{\text{pl,Rd}}$ from analysis with tension diagonal only If $N_{\text{Rd,buckling}} > 0,5 N_{\text{pl,Rd}} \implies V_{\text{ini}} \ge V_{\text{pl,Rd}}$ => possible_failure of beams and columns capacity designed to $V_{pl,Rd}$ Condition $\lambda \ge 1.3$ correspond to $\chi = 0.47$ at most avoid too high action effects in beams/columns during 1st buckling of diagonals Condition $\overline{\lambda} \leq 2,0$ to avoid shocks at retensionning • If diagonals decoupled \rightarrow 1 condition only $\lambda \leq 2,0$ $\rightarrow V_{ini} > V_{pl,Rd}$ cannot be $\lambda \ge 1,3$ not necessary

118

• Considering compression diagonals in the analysis of X braces?

Allowed, but require model for diagonals + non linear analysis static ("pushover") or dynamic Considering pre and post buckling resistances of diagonals under cyclic elasto-plastic action effects

1 diagonal in plastic tension

1 diagonal in compression with post buckling strength

Dissemination of information for training – Lisbon 10-11 February 2011

<u>Concentric bracings</u> Y direction Results of analysis

Storey	Steel	Α	N _{Ed,CBi}	N _{Rd,CB1}	Ω _i		θ
	profile	mm ²	kN	kN	N_{Rd}/N_{Ed}	λ	
1 st (ground level)	UPE 160	2170	492	770	1,56	1,80	0,17
2 nd	UPE 160	2170	531	770	1,45	1,80	0,17
3 rd	UPE 180	2510	657	891	1,35	1,70	0,15
4 th	UPE 160	2170	531	770	1,45	1,80	0,14
5 th	UPE 120	1540	373	546	1,46	2,15	0,11

1,3 < λ ≤ 2,0

except at storey 5 allowance for 2 upper storeys

• $\Omega_{\text{max}} = 1,56 \le 1,25 \ \Omega_{\text{min}} = 1,25 \times 1,35 = 1,69$

• $\theta > 0,1 =>$ amplification of N_{Ed} by 1/(1- θ)

119

Dissemination of information for training – Lisbon 10-11 February 2011

120

Beams and columns: $N_{Rd}(M_{Ed}, V_{Ed}) \ge N_{Ed.G} + 1.1\gamma_{0v}\Omega N_{Ed.E}$ *Capacity design* $\Omega_{Y,min} = 1,35 = min section overstrength factor of concentric bracings <math>\gamma_{ov} = 1,25$

Check for columns N_{Rd} buckling resistance strong&weak axis $\geq N_{ed,G} + 1,1\gamma_{ov} \Omega_{Y,min} N_{ed,E}$

Check for beams N_{Rd} resistance under combined M,N,V $\ge N_{ed,G}$ +1,1 $\gamma_{ov} \Omega_{Y,min} N_{ed,E}$

121

 $\begin{array}{l} \hline Connection \ of \ a \ CBF \ diagonal} \\ At \ level \ 1 \ \ N_{Ed,BC1} = 492 \ kN \\ \hline Element \ design => UPE160: \ N_{pl,Rd} = A \ x \ f_{y,d} = 2170 \ x \ 355 = 770 kN \\ \hline Connection \ capacity \ designed \ to \ \ N_{pl,Rd} \ UPE160: \\ \hline N_{Rd,connect} \ge 1,1 \ \gamma_{ov} \ N_{pl,Rd} = 1,1 \ x \ 1,25 \ x \ 770 = 1058 \ kN \end{array}$

122

Dissemination of information for training - Lisbon 10-11 February 2011

6 bolts, resistance in shear, one shear plane, for M30 bolts: F_{V.Rd}= 6 x 280,5 / 1,25 = 1344 kN > 1058 kN 6 M 30 bolts Connection plate t=4mm **UPE web t= 5,5 mm** additional plate t= 4 mm => total = 9,5 mm UPE 160 Gusset t=10 mm Bearing resistance: $F_{b,Rd} = k_1 \alpha_b f_u dt / \gamma_{M2}$ Here: $\alpha_{b} \leq 1$ or $\alpha_{b} = \alpha_{d}$ as f_{ub} (1000) > f_{u} (510 for S355) Values of parameters: $e_1 = 70 \text{ mm}$ $e_2 = 65 \text{ mm}$ $p_2 = 50 \text{ mm}$ $\alpha_d = 70/(3 \times 33) = 0,71$ end bolt $\alpha_d = 70/(3 \times 33) - 0.25 = 0.71 - 0.25 = 0.45$ inner bolt $k_1 = (2,8 \times 65)/33 - 1,7 = 3,8 => 2,5$ edge bolt k_1 : no inner bolts **Bearing resistance:** 4x2,5x0,71x30x51x9,5/1,25+2x2,50,45x510x30x9,5= 1087 kN > 1058 kN 1344 kN >1,2 x 1087 =1304kN bearing resist < bolt shear resistance</pre>

Dissemination of information for training – Lisbon 10-11 February 2011

123

Welds of plate placed flat on UPE web: weld throat cannot be more than $t_{plate} \ge \sqrt{2/2} = 4 \ge 0,707 = 3$ mm Resistance of a 3 mm weld: (98,1kN:1,25)/100mm=78,5kN/100mm Force to transmit: proportional to plate thickness: (4 x1058) /(4+5,5)=445 kN

Plate perimeter as from bolted connection: $2 \times (7 \times 70 + 160) = 1300$ mm => resistance = $13 \times 78,5 = 1020$ kN > 445 kN Gusset: 10 mm thick plate (as UPE web + 4 mm plate = 9,5 mm) Welds: length= $2 \times (7 \times 70 + 160 \times 0,707) = 1206$ mm x 2 (2 sides) = 2412 mm = 24 x 100 mm With a = 4mm fillet welds:($24 \times 130,9$)/1,25= 2513 kN > 1058 kN

Dissemination of information for training – Lisbon 10-11 February 2011

Some words on other ways to make Concentric Bracings

124

125

Dissipative connections in frames with concentric bracing

Interest

- designed to have connection resistance < diagonal buckling strength
- => Analytical difficulties avoided
 - all members in the model for simple analysis.
 - all the results of the analysis may be used directly
 - no distinct rules for X, V or decoupled braces
- additional stiffness in comparison to 'tension diagonal only' model compensates for the additional flexibility of semi-rigid connections
- Can be 'standardised' components with calibrated strength, obviating problems of diagonal overstrength in the design of beams and columns => γ_{ov} = 1,0
- After an earthquake, easy replacement of deformed components of connections
- Higher q = 6

Dissemination of information for training - Lisbon 10-11 February 2011

126

Dissipative connections in frames with concentric bracings

Design condition:

Deformation capacity of connections allows global deformation of the structure

Dissipative diagonals: low ε in all length *I* provide high $dI = \varepsilon x I$ **Dissipative connections:** *dl* to be realised in the connection

 $dI = d_r / \cos \alpha \qquad \cos \alpha = I / (I^2 + h^2) 1/2$

 d_r interstorey drift $d_r = q \times d_{re}$

Example

 $d_r / h = 3,5\%$; I = 6 m; h = 3 m

 $\cos \alpha = 0.894$; $d_r = 0.105$; dl = 117 mmDissipative diagonals: $\varepsilon = 1,7\%$

Dissipative connections:

dr L Q $\cos\alpha = I/(I^2 + h^2)^{1/2}$ dl=d_/cosa

required deformation capacity: 117 /2 = 58,5 mm

=> Special design 2001 ULg, INERD Project, 2 design: « pin connection » « U connection »

127

Dissemination of information for training – Lisbon 10-11 February 2011

Dissemination of information for training – Lisbon 10-11 February 2011

128

Design Criteria for frames with X, V or Λ concentric bracings and dissipative connections for the diagonals

- Resistance $R_{pl,Rd}$ of the dissipative connections: $R_{pl,Rd} \ge N_{Ed}$
- Resistance N_{b,Rd} of the diagonals capacity design to the dissipative connections resistance:

$$N_{\rm b,Rd} > R_{\rm pl,Rd} \ge N_{\rm Ed}$$

- Homogenisation of the dissipative connections overstrengths over the height of the building: $\Omega_i = R_{pl,Rd,i} / N_{Ed,i}$ $\Omega_{max} \leq 1,25 \ \Omega_{min}$ $\Omega = \Omega_{min}$
- With a controlled production of standard connections, $R_{pl,Rd}$ is known $\gamma_{ov} = 1.0$
- Resistance in tension N_{pl,Rd} or in compression N_{b,Rd} of the non dissipative elements (beams and columns):

$$N_{\text{pl.Rd}}$$
 or $N_{b,\text{Rd}}(M_{\text{Ed}}) \ge N_{\text{Ed,G}} + 1, 1\gamma_{\text{ov}} \Omega.N_{\text{Ed,E}}$

No specific requirements for frames with X, V or Λ bracing.

Dissemination of information for training – Lisbon 10-11 February 2011

129

Buckling restrained braces or BRB Principle

- active section of diagonal placed in a tube which prevents buckling
- mortal fill to link tube and active section
- tube not submitted to action effects else than buckling prevention

Steel & Composite Frames

Thank you for your attention! Read our publications at www.orbi.ulg.ac.be