

Dissemination of information for training - Lisbon, 10-11 February 2011

Modelling and Analysis (Chapter 4 of EC8-1)

Peter Fajfar University of Ljubljana Maja Kreslin University of Ljubljana

Accelerograms

Dissemination of information for training – Lisbon 10-11 February 2011

2

Hysteretic behaviour

Dissemination of information for training – Lisbon 10-11 February 2011

PRESTRESSED CONCRETE

"Philosophy" of seismic design

Performance states

Dissemination of information for training – Lisbon 10-11 February 2011

Everything should be made as simple as possible, but not simpler

Albert Einstein

Scope

Dissemination of information for training – Lisbon 10-11 February 2011

EC8-1, Chapter 4, Overview and comments

- 4.2 Characteristics of earthquake resistant buildings
- 4.3 Structural analysis
- 4.4 Safety verifications
- Test building
 - Modelling
 - Analysis
- Code designed versus old buildings

Basic principles of conceptual design

8

- Structural simplicity
- Uniformity, symmetry and redundancy
- Bi-directional resistance and stiffness
- Torsional resistance and stiffness
- Diaphragmatic behaviour at storey level
- Adequate foundation

Dissemination of information for training – Lisbon 10-11 February 2011

9

Izmit 1999

12

Kobe 1995

Chile 2010

Kobe 2010

Montenegro 1979

Kobe 1995

Montenegro 1979

Montenegro 1979

Primary seismic members

21

Dissemination of information for training – Lisbon 10-11 February 2011

 Members considered as part of the structural system that resists the seismic action, modelled in the analysis for the seismic design situation and fully designed and detailed for earthquake resistance in accordance with the rules of EN 1998

Secondary seismic members

Dissemination of information for training – Lisbon 10-11 February 2011

 Members which are not considered as part of the seismic action resisting system and whose strength and stiffness against seismic actions is neglected

Structural (ir)regularity

Dissemination of information for training – Lisbon 10-11 February 2011

Table 4.1: Consequences of structural regularity on seismic analysis and design

Regularity		Allowed Simplification		Behaviour factor	
Plan	Elevation	Model	Linear-elastic Analysis	(for linear analysis)	
Yes	Yes	Planar	Lateral force ^a	Reference value	
Yes	No	Planar	Modal	Decreased value	
No	Yes	Spatial ^b	Lateral force ^a	Reference value	
No	No	Spatial	Modal	Decreased value	

^a If the condition of **4.3.3.2.1(2)**a) is also met.

^b Under the specific conditions given in **4.3.3.1(8)** a separate planar model may be used in each horizontal direction, in accordance with **4.3.3.1(8)**.

Regularity

- Regularity in plan
 - Symmetry
 - Compact plan configuration
 - Adequate in-plan stiffness of the floors
 - Small in-plan slenderness
 - Adequate torsional stiffness
- Regularity in elevation
 - No interruption of lateral load resisting systems in elevation
 - No abrupt changes of stiffness, mass and overstrength
 - Limitations of setbacks

Torsional flexibility

Dissemination of information for training – Lisbon 10-11 February 2011

 $T_{\phi} \ge T_{x}$ and/or $T_{\phi} \ge T_{y}$ $r_{x} \ge I_{s}$ and/or $r_{y} \ge I_{s}$

Torsionally stiff

Torsionally flexible

Importance classes

Dissemination of information for training – Lisbon 10-11 February 2011

Table 4.3 Importance classes for buildings

Importance class		Buildings		
Ι	γ _l = 0.8	Buildings of minor importance for public safety, e.g. agricultural buildings, etc.		
II	γ ₁ = 1.0	Ordinary buildings, not belonging in the other categories.		
III	η = 1.2	Buildings whose seismic resistance is of importance in view of the consequences associated with a collapse, e.g. schools, assembly halls, cultural institutions etc.		
IV	γ ₁ = 1.4	Buildings whose integrity during earthquakes is of vital importance for civil protection, e.g. hospitals, fire stations, power plants, etc.		

Importance factor

Dissemination of information for training – Lisbon 10-11 February 2011

Importance factor	Return period T (years)
0.8	230
1.0	475
1.2	780
1.3	1000
1.4	1250

(based on data for Slovenia)

Combination of loads (EC0)

$$\sum_{j\geq 1} G_{k,j} \quad "+" \quad P \quad "+" \quad A_{E,d} \quad "+" \quad \sum_{i\geq 1} \Psi_{2,i} Q_{k,i}$$

- Permanent loads "G"
- Prestressing loads "P"
- Seismic loads "A"
- Variable live loads "Q" (factor Ψ_2 in EC1)

Determination of masses

Dissemination of information for training – Lisbon 10-11 February 2011

$$\sum G_{kj} \quad "+" \quad \sum \psi_{Ei} \cdot Q_{ki}$$
$$\psi_{Ei} = \varphi \cdot \psi_{2i}$$

Table 4.2: Values of φ for calculating $\psi_{\rm Ei}$

Type of variable	Storey	φ
action		
Categories A-C*	Roof	1,0
	Storeys with correlated occupancies	0,8
	Independently occupied storeys	0,5
Categories D-F [*]		1,0
and Archives		

* Categories as defined in EN 1991-1-1:2002.

Pseudo 3D model

Cracked sections

- In concrete buildings, in composite steelconcrete buildings and in masonry buildings the stiffness of the load bearing elements should take into account the effect of cracking (Secant stiffness to the initiation of yielding of the reinforcement).
- The elastic flexural and shear stiffness properties of concrete and masonry elements may be taken to be equal to **one-half** of the corresponding **stiffness** of the uncracked elements.

Cracked sections

Accidental eccentricity

Dissemination of information for training – Lisbon 10-11 February 2011

$$e_{ai}$$
 = ± 0.05 L_{i}

$L_{\rm i}$ is the floor-dimension perpendicular to the direction of the seismic action

Methods of analysis

Dissemination of information for training – Lisbon 10-11 February 2011

	STATIC ^a	DYNAMIC	S_a
LINEAR b	Lateral force method	Modal response spectrum analysis	
NONLINEAR	Nonlinear static (pushover) analysis	Nonlinear response- history analysis	^a comb ^b comb

- a combined with response spectrum
- ^b combined with behaviour factor

Behaviour factor

35

Dissemination of information for training – Lisbon 10-11 February 2011

 Factor used for design purposes to reduce the forces obtained from a linear analysis, in order to account for the non-linear response of a structure, associated with the material, the structural system and the design procedures

Behaviour factor - background

Ductility classes

Behaviour factor

Dissemination of information for training – Lisbon 10-11 February 2011

Table 5.1: Basic value of the behaviour factor, q_{0} , for systems regular in elevation

STRUCTURAL TYPE	DCM	DCH
Frame system, dual system, coupled wall system	$3,0 \alpha_{\rm u}/\alpha_1$	$4,5 \alpha_{\rm u}/\alpha_1$
Uncoupled wall system	3,0	$4,0 \alpha_{\rm u}/\alpha_1$
Torsionally flexible system	2,0	3,0
Inverted pendulum system	1,5	2,0

(3) For buildings which are not regular in elevation, the value of q_o should be reduced by 20% (see 4.2.3.1(7) and Table 4.1).

Overstrength

Overstrength factor = α_u / α_1

Montenegro 1979

Kobe 1995

Overstrength factor

- Wall- or wall-equivalent dual systems
 - wall systems with only two uncoupled walls per horizontal direction: $\alpha_u / \alpha_1 = 1,0$
 - other uncoupled wall systems: $\alpha_u / \alpha_1 = 1, 1$
 - wall-equivalent dual, or coupled wall systems: $\alpha_u / \alpha_1 = 1,2$
- Irregular in plan: reduced values
- Pushover analysis: increased values

Lateral force method

- Regular structures with small influence of higher modes
 - $T_1 \le 4 T_C$ in $T_1 \le 2.0 s$

$$F_{\rm b} = S_{\rm d}(T_1) \cdot {\rm m} \cdot {\rm \lambda}$$

Lateral force method

Dissemination of information for training – Lisbon 10-11 February 2011

- Approximate formulas for the period T₁
- Distribution of horizontal forces

 $F_{i} = F_{b} \cdot \frac{s_{i} \cdot m_{i}}{\sum s_{j} \cdot m_{j}}$

$$F_{i} = F_{b} \cdot \frac{z_{i} \cdot m_{i}}{\sum z_{j} \cdot m_{j}}$$

Accidental eccentricity

$$\delta = 1 + 1,2 (x/L_e)$$

Approximate formulas for T₁

Dissemination of information for training – Lisbon 10-11 February 2011

45

Rayleigh

$$T_1 = 2\pi \sqrt{\frac{\sum_j u_j^2 m_j}{\sum_j u_j p_j}}$$

Empirical formula

$$T_1 = C_t H^{\frac{3}{4}}$$

Modal response spectrum analysis

Dissemination of information for training – Lisbon 10-11 February 2011

Displacements:

$$\mathbf{U}_{i\max} = \mathbf{\Phi}_i \ \Gamma_i \ S_{Di} = \mathbf{\Phi}_i \ \Gamma_i \ \frac{T_i^2}{4\pi^2} \ S_{Ai}$$

Forces:

$$\mathbf{F}_i = \mathbf{M} \, \mathbf{\Phi}_i \, \Gamma_i \, S_{ai}$$

$$\Gamma_{i} = \frac{L_{i}}{M_{i}}$$
$$L_{i} = \mathbf{\Phi}_{i}^{T} \mathbf{M} \mathbf{s}$$
$$M_{i} = \mathbf{\Phi}_{i}^{T} \mathbf{M} \mathbf{\Phi}_{i}$$

Number of modes

- The response of all modes of vibration contributing significantly to the global response shall be taken into account
 - the sum of the effective modal masses amounts to at least 90% of the total mass of the structure
 - all modes with effective modal masses greater than 5% of the total mass are taken into account

Effective masses

$$m_i^* = \frac{L_i^2}{M_i}$$

$$L_i = \mathbf{\Phi}_i^T \mathbf{M} \mathbf{s}$$
 $M_i = \mathbf{\Phi}_i^T \mathbf{M} \mathbf{\Phi}_i$

$$\sum_{i=1}^{n} m_{i}^{*} = \sum_{j=1}^{m} m_{j} = M$$

Combination of modal responses

49

Dissemination of information for training – Lisbon 10-11 February 2011

 $E_E = \sqrt{\Sigma E_{Ei}^2}$ (SRSS) if $T_j \le 0.9 T_i$

Otherwise more accurate procedure, such as

CQC

Accidental eccentricity

Dissemination of information for training – Lisbon 10-11 February 2011

Accidental torsional effects

$$M_{X,i} = F_{X,i} \cdot 0.05 L_{Y,i}$$
, $M_{Y,i} = F_{Y,i} \cdot 0.05 L_{X,i}$

Pushover analysis

- N2 method (basic)
 - Target displacement: Annex B (informative)
- Extended N2
 - Higher mode effects in plan and elevation
 - Complies with the EC8-3 requirement "4.4.4.5 Procedure for estimation of torsional and higher mode effects"

Combination of effects of components

Vertical seismic action

- If a_{vg} is greater than 0,25 g (2,5 m/s2) the vertical component of the seismic action should be taken into account
- for horizontal or nearly horizontal structural members spanning 20 m or more
- for horizontal or nearly horizontal cantilever components longer than 5 m
- for horizontal or nearly horizontal pre-stressed components
- for beams supporting columns
- in base-isolated structures

Displacement calculation

Dissemination of information for training - Lisbon 10-11 February 2011

$$d_s = q_d d_e$$

displacement induced by the design seismic action
 q_d behaviour factor for displacements (q_d = q, unless otherwise specified)

 $\mathbf{d}_{\mathbf{e}}$ displacement determined by a linear analysis based on the design response spectrum

Upper limit: value from the elastic displacement spectrum Torsional effect are taken into account

Actual displacements

Non-structural element

Dissemination of information for training – Lisbon 10-11 February 2011

 Architectural, mechanical or electrical element, system and component which, whether due to lack of strength or to the way it is connected to the structure, is not considered in the seismic design as load carrying element

Non-structural elements

- For non-structural elements of great importance or of a particularly dangerous nature
 - Floor-response spectra
- For other non-structural elements
 - Simplified procedure

Non-structural elements

Dissemination of information for training - Lisbon 10-11 February 2011

Simplified analysis

$$F_{\rm a} = \left(S_{\rm a} \cdot W_{\rm a} \cdot \gamma_{\rm a}\right) / q_{\rm a}$$

$$S_{\rm a} = \alpha \cdot S \cdot [3(1 + z/H) / (1 + (1 - T_{\rm a}/T_{\rm 1})^2) - 0,5]$$

 W_a weight of the element

- γ_a importance factor for the element
- q_a behaviour factor for the element

Floor acceleration spectrum (simplified)

Additional measures for masonry infilled frames

- Provisions apply to frame or frame equivalent dual concrete systems of DCH and to steel or steel-concrete composite moment resisting frames of DCH with interacting nonengineered masonry infills
 - Recommendation: adopt also for DCM or DCL concrete, steel or composite structures with masonry infills
- Irregularities in elevation
- Irregularities in plan
- Damage limitation of infills

Friuli 1976

Montenegro 1979

Izmit 1999

Dissemination of information for training – Lisbon 10-11 February 2011

62

Safety verifications (1) - Ultimate limit state

63

Dissemination of information for training – Lisbon 10-11 February 2011

Resistance condition

 $\mbox{P-}\Delta$ effects need not be taken into account if

$$\theta = \frac{P_{\text{tot}} \cdot d_{\text{r}}}{V_{\text{tot}} \cdot h} \le 0,10$$

Safety verifications (2)

- Global and local ductility condition
 - Specific material related requirements shall be satisfied, including, when indicated, capacity design provisions
 - Prevention of storey mechanisms

$$\sum M_{\rm Rc} \ge 1,3 \sum M_{\rm Rb}$$

Capacity design

65

Capacity design

Kobe 1995

Dissemination of information for training – Lisbon 10-11 February 2011

Kobe 1995

Safety verifications (3)

- Equilibrium condition
- Resistance of horizontal diaphragms
- Resistance of foundations
- Seismic joint condition

Damage limitation state

Dissemination of information for training – Lisbon 10-11 February 2011

Limitation of interstorey drift

- non-structural elements of brittle materials $d_r \nu \le 0.005 h$, $d_r \le 0.01h$
- ductile non-structural elements $d_r v \le 0.0075 h$
- non-structural elements do not to interfere with structural deformations, or without non-structural elements
 d w < 0.010 h
 - $d_r v \le 0.010 h$ $d_r \le 0.02h$

v = 0.4 (importance classes III and IV) v = 0.5 (importance classes I in II) 71

Return period versus (importance) factor

Dissemination of information for training – Lisbon 10-11 February 2011

Return period T (years)	Return period T (years)
50	0.48
100	0.60
200	0.76
475	1.00
1000	1.30
10000	2.57

Valid for Slovenia

72
Test example

Dissemination of information for training – Lisbon 10-11 February 2011

RC building 6 stories + 2 basements

Description of building

Description of building

Description of building

Dissemination of information for training – Lisbon 10-11 February 2011

BASEMENT

Seismic actions

ELASTIC RESPONSE SPECTRUM

- $a_g = \gamma_I \cdot a_{gR} = 0.25g$
 - importance class II (γ I = 1.0)
- Soil B, Type 1
 - S = 1.2,
 - $T_B = 0.15 \text{ s}, T_C = 0.5 \text{ s}, T_D = 2.0 \text{ s}$
- Damping 5%

Vertical actions

- Permanent loads "G"
 - self weight of the structure + 2 kN/m²
- Variable live loads "Q"
 - office building (category B) \Rightarrow 2 kN/m²
- Vertical loads (G, Q) were distributed to the elements

Seismic masses (1)

Dissemination of information for training – Lisbon 10-11 February 2011

- Masses from permanent loads "G" ⇒ factor 1.0
- Masses from live loads "Q" \Rightarrow factor Ψ_{Ei}

 $\Psi_{{\rm E}i}=\varphi\cdot\Psi_{{\rm 2}i}$

- factor ϕ = 1.0 (roof storey), ϕ = 0.5 (other)
- factor $\Psi_{2i} = 0.3$ (category B)
- 15% (30%) mass from Q is taken into account

Seismic masses (2)

Dissemination of information for training – Lisbon 10-11 February 2011

Level	Storey mass <i>m</i> (ton)	Moment of inertia MMI (ton*m2)
ROOF	372	33951
5	396	36128
4	396	36128
3	396	36128
2	396	36128
1	408	37244
Σ =	2362 ton	

$$MMI = m \cdot I_s^2 = m \cdot \frac{I^2 + b^2}{12}$$

80

Structural model – general (1)

- 3D (spatial) model
- All element are modelled as line elements
 - peripheral walls are modelled with line elements and a rigid beam at the top of the each element
- Effective widths of beams (EC2)
- Rigid offsets are not taken into account
 - Infinitely stiff elements are used only in relation to walls W1 and W2
- Rigid diaphragms at each floor
 - slabs are not modelled

Structural model – general (2)

- Masses and mass moments of inertia are lumped at centres of masses
 - Only masses above the top of the peripheral walls are taken into account
- Cracked elements are considered
 - 0.5*As, 0.5*I, 0.1*It
- All elements are fully fixed in foundation
- Infills are not considered

Structural model – general (3)

Structural model – effective width EC2

Dissemination of information for training – Lisbon 10-11 February 2011

Level -1 and 0

Structural model – peripheral walls

Dissemination of information for training – Lisbon 10-11 February 2011

85

Structural regularity

Dissemination of information for training – Lisbon 10-11 February 2011

- Criteria for regularity in elevation
- Criteria for regularity in plan

1) slenderness < 4

$$\lambda = \frac{L_{\max}}{L_{\min}} < 4$$

2) eccentricity < 30%* torsional radius

3) torsional radius < radius of gyration

C	Direction X:	$e_{0X} \leq 0.30 \cdot r_X$
C	Direction Y:	$e_{_{0Y}} \leq 0.30 \cdot r_{_{Y}}$
۵	Direction X:	$r_{\chi} > I_s$
	Direction Y:	$r_{\rm v} > l_{\rm v}$

Structural regularity in plan

Dissemination of information for training – Lisbon 10-11 February 2011

Structural eccentricity e₀ and centre of stiffness

- 3 static load cases in each storey ($F_{Xi} = 1, F_{Yi} = 1, M_i = 1$)
- Loads are applied in centres of mass (CM)
- Determine rotation R_{Zi} due to F_{Xi}, F_{Yi} and M_i
- Determine e_{0i} and centres of stiffness (XCR_i, YCR_i)

$$e_{0X,i} = \frac{R_{Z,i} \left(F_{X,i} = 1 \right)}{R_{Z,i} \left(M_i = 1 \right)} \implies XCR_i = e_{0X,i} + XCM_i$$
$$e_{0Y,i} = \frac{R_{Z,i} \left(F_{Y,i} = 1 \right)}{R_{Z,i} \left(M_i = 1 \right)} \implies YCR_i = e_{0Y,i} + YCM_i$$

Structural regularity in plan

Dissemination of information for training – Lisbon 10-11 February 2011

Torsional radius (r_X, r_Y)

- 3 static load cases in each storey ($F_{TXi} = 1$, $F_{TYi} = 1$, $M_{Ti} = 1$)
- Loads are applied in centres of stifness (CR)
- Determine rotations R_{Zi} (M_{Ti}), displacement U_{Xi} (F_{Xi}) and U_{Yi} (F_{Yi})
- Determine torsional (K_{M,i}) and lateral stiffnesses (K_{FX,i}, K_{FY,i})
- Determine r_{Xi} and r_{Yi}

$$K_{M,i} = \frac{1}{R_{Z,i} (M_{T,i} = 1)}, \quad K_{FX,i} = \frac{1}{U_{X,i} (F_{TX,i} = 1)}, \quad K_{FY,i} = \frac{1}{U_{Y,i} (F_{TY,i} = 1)}$$

$$r_{X,i} = \sqrt{\frac{K_{M,i}}{K_{FY,i}}}$$
 and $r_{Y,i} = \sqrt{\frac{K_{M,i}}{K_{FX,i}}}$

Structural regularity - criteria

Dissemination of information for training – Lisbon 10-11 February 2011

- Criteria for regularity in elevation
- Criteria for regularity in plan

Irregular in elevation if basement is also considered !?

Structural type of the building

Dissemination of information for training – Lisbon 10-11 February 2011

UNCOUPLED WALL SYSTEM

- The structural system is defined as a wall system, when 65% (or more) of the shear resistance is contributed by walls
- Application of shear resistance is difficult
- EC8 allows that shear resistance may be substituted by shear forces
- Base (above basement) shear force taken by walls amounts to 72% (direction X) and 92% (direction Y) of the total shear force

Dual wall equivalent system?

Behaviour factor q

- Structural type: uncoupled wall system
- Ductility class: DCM

$$q_0 = 3.0$$

- Structural (ir)regularity:
 regular in elevation no reduction q₀
- Factor associated with prevailing failure mode: $k_w = 1$

$$q = k_w \cdot q_0 = 3.0$$

Periods, effective masses and modal shapes (1)

Dissemination of information for training – Lisbon 10-11 February 2011

ETABS program

Mode	T (sec)	M _{eff,UX} (%)	M _{eff,UY} (%)	М _{еff,MZ} (%)
1	0.92	80.2	0.0	0.2
2	0.68	0.0	76.3	0.0
3	0.51	0.2	0.0	75.2
4	0.22	15.0	0.0	0.2
5	0.15	0.0	18.5	0.0
6	0.12	0.2	0.0	17.6
	ΣM_{eff} =	95.7	94.7	93.1

92

Periods, effective masses and modal shapes (2)

Dissemination of information for training – Lisbon 10-11 February 2011

1. MODE – predominantly translational in X direction

Periods, effective masses and modal shapes (3)

Dissemination of information for training – Lisbon 10-11 February 2011

2. MODE – translational in Y direction

Periods, effective masses and modal shapes (4)

Dissemination of information for training – Lisbon 10-11 February 2011

95

3. MODE – predominantly torsional

Modal response spectrum analysis RSA

96

- Modal response spectrum analysis was performed independently for the ground excitation in two horizontal direction
- Combination of different modes CQC
- Combination of results in two directions SRSS
- Design spectrum was used
- Accidental eccentricity was taken into account
- Seismic design situation

Accidental torsional effects

Dissemination of information for training – Lisbon 10-11 February 2011

 Results of analysis without accidental torsion (SSRS of two horizontal directions) + envelope of accidental torsional effects

SRSS (E_X , E_Y) + ENVE($\pm M_X$, $\pm M_Y$)

 Results of analysis without accidental torsion + accidental torsional effects, for each horizontal direction. SRSS combination of two horizontal directions

SRSS ($E_X \pm M_X, E_Y \pm M_Y$)

RSA – Accidental torsional effects

Dissemination of information for training – Lisbon 10-11 February 2011

98

RSA – shear forces

Direction X

RSA - displacements

RSA – Damage limitations

RSA – second order effects

Force distribution

Direction X

Force distribution

Direction Y

Shear forces

Direction X

Shear forces

Direction Y

Code designed versus old buildings

Dissemination of information for training – Lisbon 10-11 February 2011

SPEAR BUILDING

Pushover curves

Determination of seismic capacity (NC)

- Test
- EC8 H

Probability of "failure"

Dissemination of information for training – Lisbon 10-11 February 2011

$$PGA_{475} = 0.25 \text{ g} \times 1.15 = 0.29 \text{ g}$$
 (seismic hazard map, soil type C)

 $PGA_c = 0.25$ g (test building), $PGA_c = 0.77$ g (EC8 building)

 $P_{NC} = 0.78 \times 10^{-2}$ or 32% in 50 years (test building)

 $P_{NC} = 2.67 \times 10^{-4}$ or 1.3% in 50 years (EC8 building)

Discussion of results

Dissemination of information for training – Lisbon 10-11 February 2011

 $PGA_{C} = 0.77 \text{ g}$

"The code is too conservative!?"

$$P_{NC,50} = 1.3 \%$$

"The probability is too high!?"

How high is the tolerable probability? How safe is safe enough?