

Dissemination of information for training - Lisbon, 10-11 February 2011

Ground conditions and seismic action

Eduardo C Carvalho GAPRES SA Chairman TC250/SC8

Earthquake vibration at the surface is strongly influenced by the underlying ground conditions

EN 1998-1 requires that appropriate investigations (in situ or in the laboratory) must be carried out in order to identify the ground conditions, with two main objectives:

• allow the classification of the soil profile, in view of defining the ground motion appropriate to the site (i.e. allowing the selection of the relevant spectral shape)

• identify the possible occurrence of soil behaviour during an earthquake detrimental to the response of the structure

Five ground types:

- A Rock
- **B** Very dense sand or gravel or very stiff clay
- **C** Dense sand or gravel or stiff clay
- D Loose to medium cohesionless soil or soft to firm cohesive soil
- E Surface alluvium layer C or D, 5 to 20 m thick, over a much stiffer material
- 2 special ground types S₁ and S₂ requiring special studies
 - Ground conditions defined by **shear wave velocities** in the **top 30 m** and also by indicative values for N_{SPT} and c_u

Dissemination of information for training – Lisbon 10-11 February 2011

Table 3.1: Ground types

Ground type	Description of stratigraphic profile	Parameters		
		v _{s,30} (m/s)	N _{SPT} (blows/30cm)	c _u (kPa)
А	Rock or other rock-like geological formation, including at most 5 m of weaker material at the surface.	> 800	_	_
В	Deposits of very dense sand, gravel, or very stiff clay, at least several tens of metres in thickness, characterised by a gradual increase of mechanical properties with depth.	360 - 800	> 50	> 250

Table 3.1: Ground types

Ground type	Description of stratigraphic profile	Parameters		
		v _{s,30} (m/s)	N _{SPT} (blows/30cm)	c _u (kPa)
C	Deep deposits of dense or medium- dense sand, gravel or stiff clay with thickness from several tens to many hundreds of metres.	180 – 360	15 - 50	70 - 250
D	Deposits of loose-to-medium cohesionless soil (with or without some soft cohesive layers), or of predominantly soft-to-firm cohesive soil.	< 180	< 15	< 70

5

Dissemination of information for training – Lisbon 10-11 February 2011

Ground type	Description of stratigraphic profile	Parameters		
		v _{s,30} (m/s)	N _{SPT} (blows/30cm)	c _u (kPa)
E	A soil profile consisting of a surface alluvium layer with v_s values of type C or D and thickness varying between about 5 m and 20 m, underlain by stiffer material with $v_s > 800$ m/s.			
S_1	Deposits consisting, or containing a layer at least 10 m thick, of soft clays/silts with a high plasticity index (PI > 40) and high water content	< 100 (indicative)		10 - 20
S_2	Deposits of liquefiable soils, of sensitive clays, or any other soil profile not included in types $A - E$ or S_1			

6

Seismic zonation

Competence of National Authorities

Described by a_{gR} (reference peak ground acceleration on type A ground)

Corresponds to the reference return period $T_{\rm NCR}$

 $a_{\rm gR}$ modified by the Importance Factor $\gamma_{\rm I}$ to become the design ground acceleration (on type A ground) $a_{\rm g} = a_{\rm gR} \cdot \gamma_{\rm I}$

Objective for the future updating of EN1998-1: European zonation map with spectral values for different hazard levels (e.g. 100, 500 and 2.500 years)

Seismic zonation

Seismic Hazard Analysis

Attenuation relationships

Sample law: Ambraseys et al. [1996] valid for:

- Intraplate seismicity (Europe)
- Rock sites
- 4.0 < M < 7.3
- •3 km < R < 200 km

Spectral law:

 $\log SA[g] = c1 + c2M + c4 \log R$

T (s)	C' ₁	C ₂	C ₄	h ₀	σ
PGA	-1.48	0.27	-0.92	3.50	0.25
0.10	-0.84	0.22	-0.95	4.50	0.27
0.20	-1.21	0.28	-0.92	4.20	0.27
0.30	-1.55	0.34	-0.93	4.20	0.30
0.40	-1.94	0.38	-0.89	3.60	0.31
0.50	-2.25	0.42	-0.91	3.30	0.32
1.00	-3.17	0.51	-0.89	4.30	0.32
1.50	-3.61	0.52	-0.82	3.00	0.31
2.00	-3.79	0.50	-0.73	3.20	0.32

Effect of Magnitude on Response Spectra (Rock, 5% damping)

Effect of Magnitude on normalised shape (Rock, 5% damping)

Effect of Epicentral Distance on Response Spectra (Rock, 5% damping) 0.30 S_{e} (g) 0.25 M = 6 0.20 Distance (km) 0.15 -15 -30 0.10 -50 -100 0.05 0.00 0.5 1.5 2 0 1 Period T (s)

Effect of Epicentral Distance on normalised shape

(Rock, 5% damping)

Basic representation of the seismic action in Eurocode 8

Elastic response spectrum

Common shape for the ULS and DLS verifications

13

- 2 orthogonal independent horizontal components
- Vertical spectrum shape different from the horizontal spectrum (common for all ground types)

Possible use of more than one spectral shape (to model different seismo-genetic mechanisms)

Account of **topographical effects** (EN 1998-5) and **spatial variation** of motion (EN1998-2) required in some special cases

Definition of the horizontal elastic response spectrum

Four branches

- $0 \le T \le T_{\rm B}$ $S_{\rm e}(T) = a_{\rm g} \cdot S \cdot (1 + T/T_{\rm B} \cdot (\eta \cdot 2, 5 \cdot 1))$
- $T_{\rm B} \leq T \leq T_{\rm C}$ $S_{\rm e}(T) = a_{\rm g} \cdot S \cdot \eta \cdot 2,5$
- $T_{\rm C} \leq T \leq T_{\rm D}$ $S_{\rm e}(T) = a_{\rm g} \cdot S \cdot \eta \cdot 2,5 (T_{\rm C}/T)$
- $T_{\rm D} \leq T \leq 4 \, {\rm s} \, S_{\rm e}(T) = a_{\rm g} \, S_{\rm o} \, \eta \, 2,5 \, (T_{\rm C} \, T_{\rm D} \, / T^{\, 2})$
 - $S_{\rm e}(T)$ elastic response spectrum
 - *a*g **design ground acceleration** on type A ground
 - $T_{\rm B} T_{\rm C} T_{\rm D}$ corner periods in the spectrum (NDPs)
 - *S* **soil** factor (NDP)
 - η damping correction factor (η = 1 for 5% damping)

Additional **information** for T > 4 s in Informative Annex

Normalised elastic response spectrum

Standard shape

Control variables

- S, T_B, T_C, T_D (NDPs)
- η (\geq 0,55) damping correction for $\xi \neq$ 5 %

Fixed variables

- Constant acceleration, velocity & displacement spectral branches
- acceleration spectral amplification: 2,5

Normalised elastic response spectrum

Correction for damping

$$\eta = \sqrt{10/(5+\xi)} \ge 0.55$$

To be applied only to elastic spectra

Two types of (recommended) spectral shapes

Depending on the characteristics of the most significant earthquake contributing to the local hazard:

- Type 1 High and moderate seismicity regions (M_s > 5,5)
- Type 2 Low seismicity regions (M_s ≤ 5,5); near field earthquakes

Optional account of **deep geology effects** (NDP) for the definition of the seismic action

18

Normalised shape for Type 1 and Type 2 seismic action (rock)

Recommended parameters for the definition of the response spectra for various ground types

19

	Seismic action Type 1			Seismic action Type 2				
Ground Type	S	T _B (s)	T _C (s)	T _D (s)	S	T _B (s)	T _C (s)	T _D (s)
A	1,0	0,15	0,4	2,0	1,0	0,05	0,25	1,2
В	1,2	0,15	0,5	2,0	1,35	0,05	0,25	1,2
С	1,15	0,2	0,6	2,0	1,5	0,1	0,25	1,2
D	1,35	0,2	0,8	2,0	1,8	0,1	0,3	1,2
E	1,4	0,15	0,5	2,0	1,6	0,05	0,25	1,2

Dissemination of information for training – Lisbon 10-11 February 2011

Type 1 - *M*_s > 5,5

Dissemination of information for training – Lisbon 10-11 February 2011

Type 2 - M_{\rm s} \le 5,5

Definition of the <u>vertical</u> elastic response spectrum

Four branches

- $0 \le T \le T_{\rm B}$ $S_{\rm ve}(T) = a_{\rm vg} \cdot (1 + T/T_{\rm B} \cdot (\eta \cdot 3, 0 1))$
- $T_{\rm B} \leq T \leq T_{\rm C}$ $S_{\rm ve}(T) = a_{\rm vg} \cdot \eta \cdot 3,0$
- $T_{\rm C} \leq T \leq T_{\rm D}$ $S_{\rm ve}(T) = a_{\rm vg} \cdot \eta \cdot 3.0 \ (T_{\rm C}/T)$
- $T_{\rm D} \le T \le 4 \, {\rm s}$ $S_{\rm ve}(T) = a_{\rm vg} \cdot \eta \cdot 3.0 \, (T_{\rm C} \cdot T_{\rm D} / T^2)$
- $S_{\rm ve}(T)$ vertical elastic response spectrum $a_{\rm vg}$ vertical design ground acceleration on type A ground $T_{\rm B} T_{\rm C} T_{\rm D}$ corner periods in the spectrum (NDPs) η damping correction factor ($\eta = 1$ for 5% damping)

Soil factor not influencing the vertical response spectrum

23

Definition of the vertical elastic response spectrum

24

Recommended parameters

Seismic action	$a_{\rm vg}/a_{\rm g}$	T _B (s)	$T_{\rm C}~({\rm s})$	$T_{\rm D}\left({ m s} ight)$
Type 1	0,90	0,05	0,15	1,0
Type 2	0,45	0,05	0,15	1,0

Displacements

25

Design ground displacement $d_g = 0,025 \cdot a_g \cdot S \cdot T_C \cdot T_D$

Elastic displacement response spectrum in Informative Annex A of EN 1998-1

Design spectrum for elastic analysis

Derived from the elastic spectrum

- $0 \le T \le T_{\rm B}$ $S_{\rm d}(T) = a_{\rm g} \cdot S \cdot (2/3 + T/T_{\rm B} \cdot (2, 5/q 2/3))$
- $T_{\rm B} \leq T \leq T_{\rm C}$ $S_{\rm d}(T) = a_{\rm g} \cdot S \cdot 2,5/q$
- $T_{\rm C} \leq T \leq T_{\rm D} \qquad S_{\rm d}(T) = a_{\rm g} \cdot S \cdot 2,5/q \cdot (T_{\rm C}/T)$ $\geq \beta \cdot a_{\rm g}$
- $T_{\rm D} \leq T \leq 4 \text{ s} \qquad S_{\rm d}(T) = a_{\rm g} \cdot S \cdot 2,5/q \cdot (T_{\rm C} \cdot T_{\rm D}/T^2)$ $\geq \beta \cdot a_{\rm g}$
 - $S_{d}(T)$ design spectrum
 - *q* behaviour factor
 - β lower bound factor (NDP recommended value: 0,2)

Specific rules for vertical action: $q \leq 1,5$

Design spectrum for elastic analysis

Derived from the elastic spectrum but:

Correction factor for damping η not included

Values of the behaviour factor *q* already account for the influence of the viscous damping being different from 5%

The behaviour factor q is an approximation of the ratio of the seismic forces that the structure would experience if its response was completely elastic with 5% viscous damping, to the seismic forces that may be used in the design, with a conventional elastic analysis model, still ensuring a satisfactory response of the structure.

Design spectra for elastic analysis

Dissemination of information for training – Lisbon 10-11 February 2011

29

Time history representation (essentially for NL analysis purposes)

Three simultaneously acting accelerograms

• Artificial accelerograms

Match the elastic response spectrum for 5% damping Duration compatible with Magnitude ($T_s \ge 10$ s) Minimum number of accelerograms: 3

<u>Recorded</u> or <u>simulated</u> accelerograms
 Scaled to a_g. S
 Match the elastic response spectrum for 5% damping