

EU-Russia Regulatory Dialogue Construction Sector Subgroup

Worked examples on BRIDGE DESIGN with EUROCODES, 17-18 April 2013, St.Petersburg

Bridge deck modelling and design process for bridges

Application to a composite twin-girder bridge according to Eurocode 4

Laurence Davaine

PhD, Bridge structural engineer, INGEROP, Paris, France

Worked examples on BRIDGE DESIGN with EUROCODES, 17-18 April 2013, St.Petersburg

1. Global analysis

- a. Calculate the internal forces and moments according to Eurocode's principles
- b. By modelling the bridge deck (geometry and stiffness to represent its actual behaviour in the best way)
- c. And by applying the load cases

2. Section and member analysis

- a. Stress limitations at ULS and SLS
- b. Concrete crack width control
- c. Stability (plate or member buckling)
- d. Connection at the steel–concrete interface
- e. Fatigue

Steel concrete composite bridges

Worked examples on BRIDGE DESIGN with EUROCODES, 17-18 April 2013, St.Petersburg

The twin-girder composite bridge represents a large majority of the new road and railway bridges built in France:

- Usual span length: 40 m < L < 80 m
- Deck width up to 22 m (2 x 2 highway lanes) with connected cross-girders

- Competitive solution
- Simple design
- Quick construction process
- Reliable structure

Global analysis of a composite bridge deck

Worked examples on BRIDGE DESIGN with EUROCODES, 17-18 April 2013, St.Petersburg

- 1. Bridge deck modelling
 - Geometry and bridge structural behaviour
 - Effective width (shear lag effect)
 - Modular ratios (concrete creep)
- 2. Apply the loads
 - Construction phases
 - Concrete shrinkage
 - Transversal traffic load distribution between main girders
- 3. Global cracked analysis according to EN 1994-2
 - Determination of the cracked zones around internal supports
 - Results from the global analysis

Cross-sectional mechanical properties

Twin-girder bridge modelling

• simply supported bar element model

C0

- half-bridge cross-section represented by its centre of gravity G (neutral fibre)
- structural steel alone, or composite, mechanical properties according to the construction phases of the bridge slab

Shear lag in composite bridges

Concrete slab in EN 1994-2

Same effective^s width b_{eff} at SLS and ULS

Steel flange in EN 1993-1-5

Used for the bottom flange of a box-girder bridge

Different effectives width at SLS and ULS

Effective slab width in Eurocode 4

- Global analysis (determining internal forces and moments) : effective width constant for each span (equal to the value at mid-span) for simplification
- Section analysis (calculation of stresses) : effective width linearly variable on both sides of the vertical supports over a length L_i/4

Shear lag in the concrete slab according to Eurocode 4

Worked examples on BRIDGE DESIGN with EUROCODES, 17-18 April 2013, St.Petersburg

Non-uniform transverse distribution of the longitudinal stresses σ_{xx}

L_e equivalent span length

$$b_{ei}=rac{L_e}{8}\leq b_i-rac{b_0}{2}$$

 $b_0 = 750 \,\mathrm{mm}$

$$b_{eff} = b_0 + \sum_i b_{ei}$$

Shear lag in the concrete slab according to Eurocode 4

9

	L _e (m)	b _{e1} (m)	b _{e2} (m)	b _{eff} (m)
In-span 1 and 3	51	3.125	2.125	6.0
In-span 2	56	3.125	2.125	6.0
Internal supports P1 and P2	35	3.125	2.125	6.0

The concrete slab is fully effective (no reduction) because, for each steel main girder, its width (6 m) is small compared to the span length (60 m or 80 m).

Mechanical properties of the composite cross-sections

Worked examples on BRIDGE DESIGN with EUROCODES, 17-18 April 2013, St.Petersburg

• Un-cracked behaviour (mid-span regions: $M_{c,Ed} > 0$)

Reinforcement neglected (in compression)

$$A = A_{a} + \frac{A_{c}}{n} \qquad Ay_{G} = A_{a}y_{Ga} + \frac{A_{c}}{n}y_{Gc}$$
$$I = I_{a} + A_{a}(y_{G} - y_{Ga})^{2} + \frac{1}{n} \Big[I_{c} + A_{c}(y_{G} - y_{Gc})^{2} \Big]$$

 $n = E_a / E_c$ is the modular ratio between elasticity moduli.

• Cracked behaviour (support regions: $M_{c,Ed} < 0$)

$$E_{a} = E_{s} = 210 \ 000 \ \text{N/mm}^{2}$$

$$A = A_{a} + A_{s} \qquad Ay_{G} = A_{a}y_{Ga} + A_{s}y_{Gs}$$

$$I = I_{a} + A_{a}(y_{G} - y_{Ga})^{2} + I_{s} + A_{s}(y_{G} - y_{Gs})^{2}$$

 $I_s \cong 0$

Concrete creep effect : modular ratios

Worked examples on BRIDGE DESIGN with EUROCODES, 17-18 April 2013, St.Petersburg

Short-term loading (no creep): $n_0 = \frac{E_a}{E_{cm}}$ with $E_{cm} = 22000(f_{cm}/10)^{0.3}$ Long-term loading (creep to be considered): $n_1 = n_0(1 + \psi_1 \phi_1)$

 $\phi_t = \phi(t - t_0)$ is the creep coefficient according to EN 1992 with :

t = age of concrete at the considered design date during the bridge life

 t_0 = age of concrete when the considered loading is applied to the bridge

 ψ_L depends on the load case:

Permanent loads	1.1
Shrinkage	0.55
Imposed deformations	1.5

Creep coefficient according to EN 1992

Worked examples on BRIDGE DESIGN with EUROCODES, 17-18 April 2013, St.Petersburg

End of construction

All loading cases are applied to the bridge model using the short-term mechanical properties (n_0) .

Design life of the bridge

Short-term loading : n_0 Long-term loading : n_L

Worked example: modular ratios

<u>Note</u> : $t_0 = 1$ day when shrinkage is applied to a concrete segment.

$$\phi_4 = \phi(\infty, t_0) \qquad n_{L,4} = n_0 \left(1 + 0.55.\phi_4\right)$$

Worked example: modular ratios

Short-term loading :

$$n_0 = \frac{E_a}{E_{cm}} = 6.2$$

• Long-term loading (permanent loads, shrinkage, imposed deformations) :

Load case	Ψ_L	t _o (days)	$\phi_t = \phi_0$	n _L
Concrete slab segment (selfweight) Settlement Shrinkage Bridge equipments (safety barriers, road pavement,)	1.10 1.50 0.55 1.10	35.25 49.25 1 79.25	1.39 1.29 2.68 1.18	15.6 18.1 15.2 14.1

Global analysis of a composite bridge deck

- 1. Bridge deck modelling
 - Geometry and global bridge behaviour
 - Effective width (shear lag effect)
 - Modular ratios (concrete creep)
- 2. Apply the loads
 - Construction phases
 - Concrete shrinkage
 - Transversal traffic load distribution between main girders
- 3. Global cracked analysis according to EN 1994-2
 - Determination of the cracked zones around internal supports
 - Results from the global analysis

Applied loads for the road bridge example

Permanent loads (taking creep into account if relevant)					
G _{max} ,	Self weight:	EN1991 part 1-1			
G _{min}	structural steel				
	 concrete (by segments in a selected order) 				
	non structural equipments (safety barriers, pavement,)				
S	Shrinkage (drying, autogenous and thermal shrinkage	EN1992 part 1-1			
	strains)	EN1994 part 2			
Р	Pre-stressing by imposed deformations (for instance, jacking on internal supports)				
Variable loads (no creep effect)					
Τ _k	Temperature effects	EN1991 part 1-5			
UDL, TS	Road traffic	EN1991 part 2			
FLM3	Fatigue load model (for instance, the equivalent lorry FLM3)	EN1991 part 2			

Construction slab stages

- imposed concreting order to reduce the concrete tension around internal supports
- For the example, 16 concreting phases (12.5 m long slab segment)

Construction slab stages

Worked examples on BRIDGE DESIGN with EUROCODES, 17-18 April 2013, St.Petersburg

During the 10th concreting phase, the load case is the self-weight of the 10th concrete segment.

Mechanical properties of the composite un-cracked cross-section

Mechanical properties of the structural steel alone cross-section

In the cross-section (Σ), the stress distribution should take into account the construction history.

Effects of shrinkage in a composite bridge

Worked examples on BRIDGE DESIGN with EUROCODES, 17-18 April 2013, St.Petersburg

Free shrinkage strain applied on concrete slab only (no steel – concrete interaction) e.n.a

Shrinkage strain applied on the composite section (after steel – concrete interaction)

1- Auto-equilibrated stress diagram in every section and an imposed rotation due to the bending moment $M_{iso} = N_{cs} z_{cs}$:

$$\sigma_{concrete} = -E_c \varepsilon_{cs} + \frac{1}{n} \cdot \left[\frac{N_{cs}}{A} + \frac{(N_{cs} Z_{cs}) \cdot Z}{I} \right]$$
$$\sigma_{steel} = \frac{N_{cs}}{A} + \frac{(N_{cs} Z_{cs}) \cdot Z}{I}$$

Effects of shrinkage in a composite bridge

Worked examples on BRIDGE DESIGN with EUROCODES, 17-18 April 2013, St.Petersburg

2- Curvature in an isostatic bridge due to the imposed deformations :

3- Compatibility of deformations to be considered in an hyperstatic bridge :

Shrinkage and cracked global analysis

Thermal gradient from Eurocode 1 Part 1-5

- could be neglected if all cross-sections are in Class 1 or 2
- 3 options: have to be chosen in the National Annex
 - <u>1- Non linear gradients</u> :

Transversal distribution of live load between the two girders

23

No warping stress calculations and slab torsional stiffness neglected

Worked examples on BRIDGE DESIGN with EUROCODES, 17-18 April 2013, St.Petersburg

1. Conventional traffic lanes positioning

Worked examples on BRIDGE DESIGN with EUROCODES, 17-18 April 2013, St.Petersburg

2. Tandem System TS

Support reaction on each main girder : $R_1 = 471.4 \text{ kN}$ $R_2 = 128.6 \text{ kN}$

Worked examples on BRIDGE DESIGN with EUROCODES, 17-18 April 2013, St.Petersburg

Support reaction for each main girder : $R_1 = 35.36 \text{ kN/ml}$

 $R_2 = 6.64 \text{ kN/ml}$

26

27

Worked examples on BRIDGE DESIGN with EUROCODES, 17-18 April 2013, St.Petersburg

4. Bending Moment (MN.m) for UDL and TS

Combinations of actions

Worked examples on BRIDGE DESIGN with EUROCODES, 17-18 April 2013, St.Petersburg

For every **permanent design situation**, two limit states of the bridge should be considered :

⇒ Serviceability Limit States (SLS)

- Quasi permanent SLS G_{max} + G_{min} + S + P + 0.5 T_k
- Frequent SLS

 $G_{max} + G_{min} + S + P + 0.75 TS + 0.4 UDL + 0.5 T_k$ $G_{max} + G_{min} + S + P + 0.6 T_k$

Characteristic SLS

 $\begin{array}{l} G_{max} + G_{min} + S + P + (TS+UDL) + 0.6 T_k \\ G_{max} + G_{min} + S + P + Q_{lk} + 0.75 TS + 0.4 UDL + 0.6 T_k \\ G_{max} + G_{min} + S + P + T_k + 0.75 TS + 0.4 UDL \end{array}$

⇒ Ultime Limite State (ULS) other than fatigue

 $\begin{array}{l} \textbf{1.35} \ \textbf{G}_{max} + \textbf{G}_{min} + \textbf{S} + \textbf{P} + \textbf{1.35} \ (\textbf{TS} + \textbf{UDL}) + \textbf{1.5} \ (0.6 \ \textbf{T}_k) \\ \textbf{1.35} \ \textbf{G}_{max} + \textbf{G}_{min} + \textbf{S} + \textbf{P} + \textbf{1.35} \ \textbf{Q}_{lk} + \textbf{1.35} \ (0.75 \ \textbf{TS} + 0.4 \ \textbf{UDL}) + \textbf{1.5} \ (0.6 \ \textbf{T}_k) \\ \textbf{1.35} \ \textbf{G}_{max} + \textbf{G}_{min} + \textbf{S} + \textbf{P} + \textbf{1.5} \ \textbf{T}_k + \textbf{1.35} \ (0.75 \ \textbf{TS} + 0.4 \ \textbf{UDL}) \end{array}$

Global analysis of a composite bridge deck

Worked examples on BRIDGE DESIGN with EUROCODES, 17-18 April 2013, St.Petersburg

- 1. Bridge deck modelling
 - Geometry and global bridge behaviour
 - Effective width (shear lag effect)
 - Modular ratios (concrete creep)
- 2. Apply the loads
 - Construction phases
 - Concrete shrinkage
 - Transversal traffic load distribution between main girders
- 3. Global cracked analysis according to EN 1994-2
 - Determination of the cracked zones around internal supports
 - Results from the global analysis

Cross-sectional mechanical properties

Classification of cross-sections (EC3)

Classification of cross-sections

Worked examples on BRIDGE DESIGN with EUROCODES, 17-18 April 2013, St.Petersburg

CLASS 1 sections which can form a plastic hinge with the rotation capacity required for a global plastic analysis

Not for bridges Except accidental design situation

CLASS 2 sections which can develop M_{pl,Rd} with limited rotation capacity

CLASS 3 sections which can develop $M_{el,Rd}$

COMPOSITE BRIDGES

Non-uniform section (except for small spans)

Actual behaviour of a composite bridge

Worked examples on BRIDGE DESIGN with EUROCODES, 17-18 April 2013, St.Petersburg

When performing the elastic global analysis, two aspects of the nonlinear behaviour are indirectly considered.

Cracked global analysis

Worked examples on BRIDGE DESIGN with EUROCODES, 17-18 April 2013, St.Petersburg

- \bullet Determination of the stresses σ_c in the extreme fibre of the concrete slab under SLS characteristic combination according to a non-cracked global analysis
- In sections where σ_{c} < 2 f_{ctm} , the concrete is assumed to be cracked and its resistance is neglected

El₁ = un-cracked composite inertia (structural steel + concrete in compression)

El₂ = cracked composite inertia (structural steel + reinforcement)

Cracked global analysis

Worked examples on BRIDGE DESIGN with EUROCODES, 17-18 April 2013, St.Petersburg

Simplified method usable if :

 $- L_{min}/L_{max} > 0.6$

- no pre-stressing by imposed deformation
- A_{s}

In the cracked zones EI_2 :

- the resistance of the concrete in tension is neglected
- the resistance of the reinforcement is taken into account

Worked example: Cracked zones around internal supports

Worked examples on BRIDGE DESIGN with EUROCODES, 17-18 April 2013, St.Petersburg

d including the construction phening and the up arealised composite helpsvisur

Yielding

Worked examples on BRIDGE DESIGN with EUROCODES, 17-18 April 2013, St.Petersburg

Yielding at mid-span induces bending redistribution which should be considered if :

- Class 1 or 2 cross-section at mid-span (and M_{Ed} > M_{el.Rd})
- Class 3 or 4 near intermediate support
- $L_{min}/L_{max} < 0.6$

36

• Elastic linear analysis with an additional verification for the crosssections in sagging bending zone (M>0) :

$$M_{Ed} < 0.9 M_{pl,Rd}$$

or

• Non linear global analysis (Finite Elements for instance)

Worked examples on BRIDGE DESIGN with EUROCODES, 17-18 April 2013, St.Petersburg

To calculate the internal forces and moments for the ULS combination of actions

- elastic global analysis (except for accidental loads)
- cracking of the concrete slab
- shear lag (in the concrete slab : $L_e/8$ constant value for each span)
- neglecting plate buckling (except for an effective^p area of an element ≤ 0.5 * gross area)
- To calculate the internal forces and moments for the SLS combinations of actions
 - as for ULS
- To calculate the longitudinal shear per unit length (SLS and ULS) at the steel-concrete interface
 - Cracked global analysis, elastic and linear
 - <u>Always</u> un-cracked section analysis

Results for the twin-girder bridge example

Worked examples on BRIDGE DESIGN with EUROCODES, 17-18 April 2013, St.Petersburg

SLS and ULS bending moment distribution M_{Ed} (= $M_{a,Ed}$ + $M_{c,Ed}$)

Results for the twin-girder bridge example

Results for the twin-girder bridge example

Worked examples on BRIDGE DESIGN with EUROCODES, 17-18 April 2013, St.Petersburg

ULS stresses (N/mm²) along the steel flanges, calculated without concrete resistance

40

The results from the global analysis will be used for :

- the bridge deck cross-section analysis,
- the abutments and piers check,
- the foundation calculations,

Thank you for your attention !