

Dissemination of information for training - Brussels, 2-3 April 2009

EN 1996-3

Simplified calculation methods for unreinforced masonry structures

Simon Wijte

Content

- Scope
- Actions
- Material properties
- Walls subject to vertical and wind loads

- Concentrated loads
- Shear resistance of a wall
- Walls subject to lateral earth pressure
- Walls subject to limited lateral load
- Walls subject to uniform lateral load

Scope

Methods are simplified in relation to EN 1996-1-1 and therefore:

- conservative
- Imited in their use

Actions

Actions should be based on the loads from EN 1991 and the load combinations according to EN 1990 Basis of Design

Use of EN 1996-3

It should be possible to use this code without EN 1996-1-1 being on your desk. Therefore in addition to ENV 1996-3, material properties are given in EN 1996-3

Material properties

- are given in chapter 3
- values are described for the compressive strength, the flexural strengths and the shear strength

- simplified material properties of masonry can be derived from the unit- and mortar properties, using the tables in the informative annex D
- simplified properties are indicated with indices s, so
 f_k will be f_{k;s}

Material properties in annex D

•values in annex D are based on the recommended methods and values of the ndp's in part 1-1

EN 1996-3

 in the national annex these tables can be revised, based on the national chosen methods and values for the ndp's.

Walls subject to vertical and wind loads

- Clause 4.2
- Background: Simplified method is based on several linear calculations according to 6.1.2 and annex C of part 1-1 and some non-linear elastic calculations.

EN 1996-3

9

General conditions

- •building height is limited (ndp)
- floor span is limited to 7 meter
- clear storey height limited to 3,2 m
- •bearing length at least 0,4 t
- $\blacksquare slendernessratio \ h_{ef}/t_{ef} \leq 27$

concrete slabs should fulfill the requirements from EN 1992-1-1 clause 7.4 (deflection)

Additional conditions to the floorspanIf $N_{Ed} < k_G t b f_d$ (k_G is 0,2 for group 1 units)

EN 1996-3

then floor span limited to 7 m

else if $f_d > 2,5$ N/mm² then floor span limited to the lesser of 4,5 + 10 t and 7 m else floor span limited to the lesser of 4,5 + 10 t and 6 m

 $M_{\rm Ed} = q_{\rm Ed} h^2 / 16$ $M_{\rm Ed} = N_{\rm Ed} e_{\rm t}$ gives $e_{\rm t} / t = q_{\rm Ed} h^2 / (16 N_{\rm Ed} t)$

EN 1996-3

assuming $\Phi_{\rm m} = 0,05$ a relation between $e_{\rm t}/t$ and $h_{\rm ef}/t_{\rm ef}$ can be found: $e_{\rm t}/t = 0,528 - 0,0122 \ h_{\rm ef}/t_{\rm ef}$ (figure G.2 part 1-1)

assuming $t = t_{ef}$ and $h_{ef} = 0,75h$ it can be found that:

$$t \ge rac{0,12 \, q_{\rm Ed} \, b \, h^2}{N_{\rm Ed}} + 0,017 \, h$$

$$\alpha = \Phi_{\rm m} = 0.05$$

 $c_1 = 0.12$ and $c_2 = 0.017$ (table 4.1)

Vertical design resistance

 $N_{\rm Ed} \leq N_{\rm Rd}$ where $N_{\rm Rd} = \Phi_{\rm s} f_{\rm d} A$

for internal walls, $\Phi_{\rm s}$ follows from: 0,85 - 0,0011 $\left(\frac{h_{\rm ef}}{t_{\rm ef}}\right)^2$

for end walls, not at the top storey, Φ_s follows from the lesser of: $0,85 - 0,0011 \left(\frac{h_{ef}}{t_{ef}}\right)^2$; $1,3 - \frac{l_{f,ef}}{8}$ and 0,85

EN 1996-3

Vertical design resistance

 $N_{\rm Ed} \leq N_{\rm Rd}$ where $N_{\rm Rd} = \Phi_{\rm s} f_{\rm d} A$

for end walls, at the top storey, Φ_{s} follows from the lesser of: 0,85 - 0,0011 $\left(\frac{h_{ef}}{t_{ef}}\right)^{2}$; 1,3 - $\frac{l_{f,ef}}{8}$ and 0,4

Dissemination of information for training – Brussels, 2-3 April 2009

EN 1996-3

Formula is a simplification of the formula in clause 6.1.3 in part 1-1

when the perpend joints are not filled: $f_{vdo-unfilled} = 0.5 f_{vdo}$ $V_{Rd} = 1.5(0.5l - e_{Ed}) t f_{vdo} + 0.4 \frac{N_{Ed}}{\gamma_M}$

Walls subject to lateral earth pressure

- Clause 4.5
- **General conditions**
 - •clear height of the wall \leq 2,6 m
 - wall thickness ≥ 200 mm
 - •floor over basement acts as a horizontal support
 - Ioad on ground surface limited to 5 kN/m²
 - no hydrostatic pressure acting on the wall
 - no slip plane created by e.g. a damp proof course

EN 1996-3

Axial load on the basement wall limited

 β is a factor related to b_c/h

 $t \ge 200 \text{ mm}$

EN 1996-3

vertical section

horizontal section

20

Walls subject to limited lateral load

Clause 4.6 Derived from annex F of part 1-1

No load due to

•wind,

•furniture,

persons etc.

Walls subject to uniform lateral load no vertical load

- Clause 4.7
- $\mu = f_{xd1}/f_{xd2}$
- Based on annex E of part 1-1
- $$\begin{split} M_{\rm Ed1} &= \mu \, \alpha_2 \, \rho_{\rm Ed} \, l^2 & M_{\rm Rd1} = f_{\rm xd1} \, t^2/6 & M_{\rm Ed1} \leq M_{\rm Rd1} \\ M_{\rm Ed2} &= \alpha_2 \, \rho_{\rm Ed} \, l^2 & M_{\rm Rd2} = f_{\rm xd2} \, t^2/6 & M_{\rm Ed2} \leq M_{\rm Rd2} \\ \text{both lead to:} \end{split}$$
- $\mu \alpha_2 p_{\text{Ed}} l^2 = f_{\text{xd1}} t^2/6$

Dissemination of information for training - Brussels, 2-3 April 2009

$$\frac{l}{t} = \sqrt{\frac{f_{xd1}}{p_{Ed}}} \frac{1}{6\mu\alpha_2}$$

Example: $f_{\rm xd1}/p_{\rm Ed} = 100$ $\mu = 0,5$ h/l = 1,25table E of annex E part 1-1: $\alpha_2 = 0,066$

EN 1996-3

23

$$\frac{l}{t} = \sqrt{\frac{100}{6 \cdot 0, 5 \cdot 0,066}} = 22,4$$

h/t = 22,4×1,25 = 28

Dissemination of information for training – Brussels, 2-3 April 2009

EN 1996-3

Example l = 5 meter h = 4 meter t = 150 mm $f_{xd1} = 0.3 \text{ N/mm}^2$ $\mu = 0,5$ boundary conditions b

l/t = 5/0,15 = 33,3 *h*/t = 4/0,15 = 26,7

 $f_{\rm xd1}/p_{\rm Ed} = 250$

 $p_{Ed} \le f_{xd1}/250$ $f_{xd1} = 0.3 \text{ N/mm}^2$ $= 300 \text{ kN/m}^2$ $p_{Ed} \le 300/250 = 1.2 \text{ kN/m}^2$

26

Dissemination of information for training – Brussels, 2-3 April 2009

27