# INFORMATION FOR TRAINING - EN 1996 

## COMPRESSIVE LOADING

## Barry Haseltine

Convenor SC6 PT1
Formerly chairman TC 250 SC6

## Calculation of vertical load capacity

Decide t and h
Obtain $t_{\text {ef }}$
Obtain $h_{\text {ef }}$ using $\rho$
Calculate SR
Calculate e
Choose masonry unit and mortar
Obtain $f_{k}$
Choose $\gamma_{M}$ hence get $f_{d}$
Get $\Phi$
Calculate $t f_{d} \Phi$

## Compressive loading



# Characteristic Compressive Strength of Masonry 

$$
\mathrm{f}_{\mathrm{k}}=\mathrm{Kf}_{\mathrm{b}}^{0.7} \mathrm{f}_{\mathrm{m}}^{0.3}
$$

According to UK National Annex

$$
\mathrm{f}_{\mathrm{d}}=\mathrm{f}_{\mathrm{k}} / \gamma_{\mathrm{m}}
$$

## Unit Grouping

Group 1: Solid or $<25 \%$ vertical holes

Group 2: 25 to $55 \%$ vertical holes

Group 3: 55 to 70\% vertical holes

Group 4 : 25 to $60 \%$ horizontal holes

## EN 1996-1-1

## Ultimate limit statePartial factor for materials, $\gamma_{M}$, is an NDP

Recommended values

| Material |  | $\gamma_{M}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Class |  |  |  |  |  |
|  |  | 1 | 2 | 3 | 4 |  | 5 |
| $\begin{aligned} & \mathbf{A} \\ & \mathbf{B} \\ & \mathbf{C} \end{aligned}$ | Masonry made with: <br> Units of Category I, designed mortar ${ }^{1}$ Units of Category I, prescribed mortar ${ }^{2}$ Units of Category II, any mortar ${ }^{\mathbf{1 , 2 , 5}}$ | $\begin{aligned} & \mathbf{1 , 5} \\ & \mathbf{1 , 7} \\ & \mathbf{2 , 0} \end{aligned}$ | $\begin{aligned} & 1,7 \\ & 2,0 \\ & 2,2 \end{aligned}$ | $\begin{aligned} & 2,0 \\ & 2,2 \\ & 2,5 \end{aligned}$ | 2,2 2,5 2,7 |  | $\begin{aligned} & \mathbf{2 , 5} \\ & \mathbf{2 , 7} \\ & \mathbf{3 , 0} \end{aligned}$ |
| D | Anchorage of reinforcing steel | 1,7 | 2,0 | 2,2 | 2,5 |  | 2,7 |
| E | Reinforcing steel and prestressing steel | 1,15 |  |  |  |  |  |
| F | Ancillary components ${ }^{\text {3,4 }}$ | 1,7 | 2,0 |  |  | 2,5 | 2,7 |
| G | Lintels according to EN 845-2 ${ }^{3}$ |  |  | 2,5 |  |  |  |
| Notes: <br> 1. Requirements for designed mortars are given in EN 998-2 and EN 1996-2 <br> 2. Requirements for prescribed mortars are given in EN 998-2 and EN 1996-2 <br> 3. Declared values are mean values. <br> 4. Damp proof courses are assumed to be covered by masonry $\gamma_{M}$. <br> 5. When the coefficient of variation for Category II units is not greater than $\mathbf{2 5 \%}$. |  |  |  |  |  |  |  |

## EN 1996-1-1

## Vertical loadbearing capacity

Verification $N_{R d} \geq N_{E d}$
$\mathrm{N}_{\mathrm{Rd}}=\Phi \mathrm{tf}_{\mathrm{d}}$
$\Phi$ takes account of slenderness and eccentricity

## Simplified frame diagram



Values of $\Phi \mathrm{m}$ against slenderness ratio for different eccentricities


## Calculation of eccentricity


$1 \frac{\mathrm{El}}{\mathrm{h}}=562 \times 10^{6} \mathrm{Nmm}$ $2 \frac{\mathrm{El}}{I}=0.75 \times 10^{9} \mathrm{Nmm}$ FEM $=4.8 \mathrm{kNm}$
$3 \frac{\mathrm{EI}}{\mathrm{h}}=562 \times 10^{6} \mathrm{Nmm}$


## IMS Guide on EN 1996-1-1 and -2

## Eurocode for Masonry, EN 1996-1-1 and

 EN 1996-2:Guidance and worked examples

Purchase from IMS
£35.00 for members of IMS
£45.00 for non-members
SPECIAL PRICE FOR CONFERENCE $40 €$

