EUROCODE 6

Design of masonry structures

EUROCODE 6 Combined loading

Poul Christiansen
 Danish Technological Institute

poul.christiansen@teknologisk.dk

Walls subjected to vertical and lateral load

Walls supported by 2-3-4 edges and with openings

Edges restrained or simply supported

$$
\mathrm{N}_{\mathrm{Ed}}[\mathrm{kN} / \mathrm{m}]
$$

Either:

1. A distribution between the outer and inner leaf.
or
2.The total wind load applied on the inner leaf, when (5.11) is used.
$\mathrm{t}_{\text {ef }}=\sqrt[3]{\mathrm{k}_{\text {tef }} \mathrm{t}_{1}^{3}+\mathrm{t}_{2}^{3}}$

If 1. Either:

A. According to the stiffness
$W_{E d, 1}=W_{E d, 1} \times \frac{(E I)_{1}}{(E I)_{1}+(E I)_{2}}$
B. According to the capacity

$$
\begin{equation*}
\mathrm{W}_{\text {cap }}=\mathrm{W}_{\text {cap }, 1}+\mathrm{W}_{\text {cap }, 2} \tag{6}
\end{equation*}
$$

In this example (5.11) is used

Yield line theory is relevant for openings, 3-4 sided walls. Φ - method is relevant for 2 . order effects and walls supported in top and buttom The link between the methods is the equivalence of M_{Ed}. Thus an equivalent windload is introduced: $\mathrm{W}_{\text {eqv }}\left(<>\mathrm{W}_{\text {ed }}\right)$

\uparrow
(Annex I)

The thickness can be formally altered:

When formula 5.11 is used:

$$
t_{e f}=\sqrt[3]{k_{t e f} t_{1}^{3}+t_{2}^{3}}
$$

When table 5.1 is used:

Table 5.1 - Stiffness coefficient, ρ_{t}, for walls stiffened by piers, see figure 5.2

Ratio of pier spacing (centre to centre) to pier width	Ratio of pier thickness to actual thickness of wall to which it is bonded		
	1	2	3
6	1,0	1,4	2,0
10	1,0	1,2	1,4
20	1,0	1,0	1,0
NOTE Linear interpolation between the values given in table 5.1 is permissible.			

Key

1)	pier
spacing	
2)	pier depth
3)	thickness
of wall	
4)	pier width

$\mathrm{N}_{\mathrm{Ed}}[\mathrm{kN} / \mathrm{m}]$
$\downarrow \downarrow \downarrow$

When using both formulas the expression will be:
$\mathrm{t}_{\text {ef }}=\sqrt[3]{\mathrm{k}_{\text {tef }} \mathrm{t}_{1}^{3}+\left(\rho_{\mathrm{t}} \mathrm{t}_{2}\right)^{3}}$

For this example the effective height will normally be set equal to the geometrically height. i.e.:

$$
h_{\text {eff }}=h
$$

In Eurocode 1996-1-1 there are rules for determining ρ_{3} and ρ_{4}, i.e. the reduction factor for 3 and 4 sided supported walls (without openings). E.g.:

$$
\begin{equation*}
\rho_{4}=\frac{1}{\left(1+\left(\frac{h}{l}\right)^{2}\right)} \tag{5.8}
\end{equation*}
$$

To implement openings following procedure can be used.

The effective height is determined in sections

The main issue when regarding the eccentricity at the top (and the bottom) is the stiffness of the slab in the moment of fracture. The eccentricity can in practice be $t / 2$ in favour of the construction or $t / 2$ in disfavour of the construction. The implication for the load capacity is large.

Stiff slab.
I.e. the rotation stiffness in the moment of fracture
is larger for the slab compared with the wall

Slack slab

\qquad I.e the rotation stiffness is smaller for slab than the wall in the moment of fracture

The Danish approach is to define an interval of eccentricity producing an interval for the compression stress. For stiff slabs, foundation, etc the interval is the bearing length. For slack slabs it is half the bearing length.

The interval of eccentricity for stiff slabs is the bearing length

The interval of eccentricity for slack slabs is $1 / 2$ the bearing length

Determination of the compression line/ zone after determining $h_{\text {eff }}, t_{\text {eff }}, W_{\text {eqv }}$, etc is done by the usually statically methods.

Wide of the compression zone is determined by f_{d}

The shape of the compression zone is an affinity to the moment

To cover the spectra of eccentricities Φ_{fl} is introduced in 6.3.1 (4) (ii).

Here the extended Navier expression is used to cover the area of "small N" and "large M"

Extended Navier expression

$$
\frac{\mathbf{N}}{\mathbf{A}} \mp \frac{\mathbf{N}_{\mathrm{cr}}}{\mathbf{N}_{\mathrm{cr}}-\mathbf{N}_{\mathrm{d}}} \frac{\mathbf{M}}{\mathbf{W}} \leq\left\{\begin{array}{l}
\mathbf{f}_{\mathrm{xd} 1} \\
\mathbf{f}_{\mathrm{d}}
\end{array}\right.
$$

$$
\text { Annex G, } \Phi \text { - method }
$$

Formula (6.16)

$$
f_{\mathrm{xd} 1, \mathrm{app}}=f_{\mathrm{xd} 1}+\sigma_{\mathrm{d}}
$$

$$
\mathbf{M}, \mathrm{kNm} / \mathrm{m}
$$

3.0
2.5

Thank you for listening

Any later comments, etc to the papers: poul.christiansen@teknologisk.dk

Computer program on the Internet for designing according to EN1996-1-1:
www.ec6design.com

