

Austrian Experience using Eurocode 2, Concrete Bridge Design

Dr.techn. Markus Vill

Engineering Services, Bridge Departement, ÖBB markus.vill@oebb.at

Current Situation in Austria

- For bridge design only the Eurocodes have been in use since Jan.
 2009
- All national standards for structural engineering were withdrawn 2009
- From then on only the Eurocodes have been used for the design of all engineering structures in Austria
- So Austria is among the first country were <u>only</u> the Eurocodes are used because the national standards don`t exist anymore
- Big necessity for the further evolution of the Eurocodes because mistakes and non-conformity can only be discovered by practical use

Concrete Bridge Design Basis for the design of concrete bridges in Austria

Traffic Loads:

• ÖNORM EN 1991-2:2009 and national annex: **B1991-2:2010**

Material:

- ÖNORM EN 1992-1-1:2009 and national annex: **B1992-1-1:2011**
- ÖNORM EN 1992-2:2007 and national annex: **B1992-2:2008** Geotechnic:
- ÖNORM EN 1997-1:2009 and national annex: **B1997-1-1:2010**
- ÖNORM EN 1997-2:2010 and national annex: **B1997-2:2008**

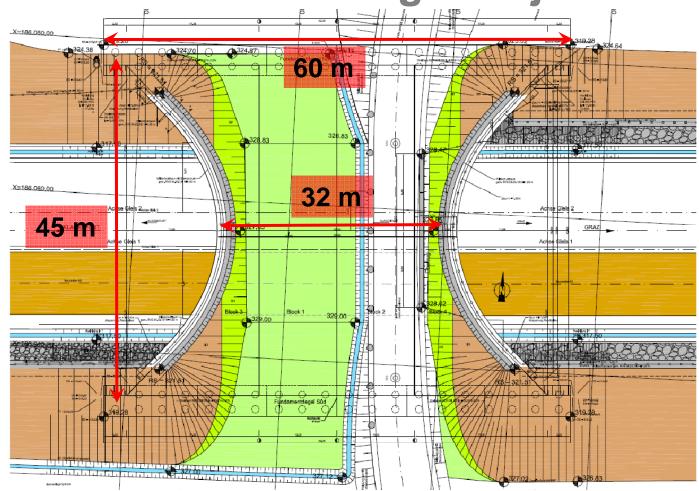
Project 1: Composite Arch bridge

Composite Arch bridge:

Span aprox. 35 m Arch: Steel tube dia. 559 x 59 mm Bridge deck: composite deck; thickness 50 cm Twin hanger: S460, dia 48 mm

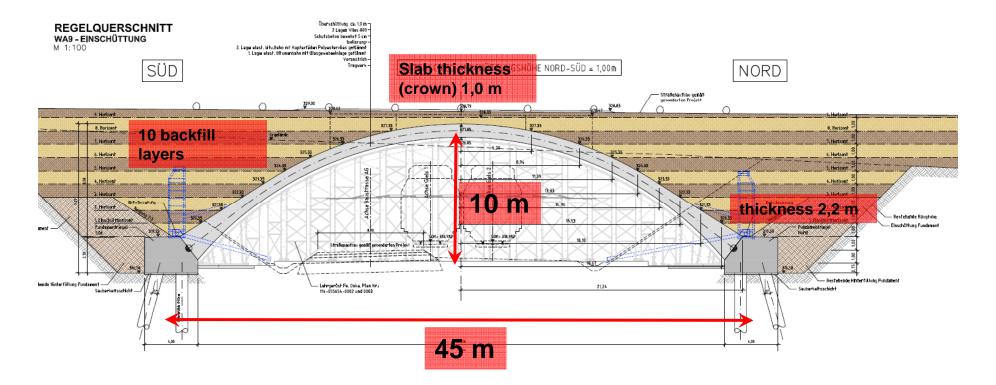
Special feature: Computation of fatigue resistance (municipal road bridge)

Project 2: Shallow Arch bridge for wildlife crossing and municipal road


Shallow Arch bridge for wildlife crossing

Span: aprox. 45 m Arch: concrete slab, thickness 100 cm Foundation: bore piles, dia. 90 cm, length: 18 m Special features: Computation of soil-structure-interaction according to EC 7

Dr. Markus Vill



Dr. Markus Vill

Describtion of the Bridge Projekt 2/2

Project 3: Post-tensioned street bridge

Post-tensioned street bridge

Overall length: 160 m Superstructure: T-beams, web thickness 70 cm, Hight webs: 1,6 m - 3,6 m

Special features: partial safety factors for the computation of bearing elongations and expansion joints

Project 4: Single-span-frame

Integral concrete bridge Overall length: 14,0 m Superstructure: Concrete slab, thickness 1,10 m

Special features: Computation of fatigue, constraint stresses by temperature

Improvement for practical use

- Improving the clarity
- Simplifying cross-references within the Eurocode 2
- Limiting the inclusion of alternative application rules
- Reducing the NDPs
- Avoiding or removing rules of low practical use in design

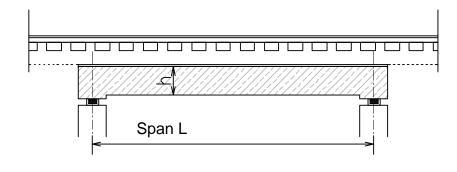
Example for simplification: Model for single span bridges (slabs, frames)

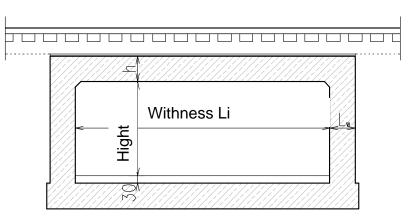
Example of LC and LG – combination ULS for single span beam – only traffic loads

BIEGEMOMENTE:

	BLOHR DER LATIGRUPPEN (FÜR ABGRANANTE)																						
	Vertisatisatistei (Minulu) Antidanen Brennen (K	idfinvån)			Fletion	it (Minin)			Т			Selterated	[dimin]						Ergeb	nia (Grappe)	(finite)		Ť
or 11	N 487 PI 488 PI 488 PI 4882 PI 4127 PI 4158 PI 4110 PI 4960 , PI 483		05 Pt -	-56,2 P2 -11,7	12 - 63	Fit + F	1 · R	· P7 ·	0.5	P1 -8,0 P	- 6,9 PI	- 48 M	-0,6 Pf	-2,9 P	· 備計 117	-8,0	P1 -160,6	P1 -145,3			Pf -157,3		PT -150,8
	P1 548,0 P1 152,7 P1 560,1 P1 154,6 P1 166,3 P1 158,8 P1 560,5 P1 158,0 P1 560,5 P1 168,3 P1 560,5 P1 0.0 P	Pt2 0,0 P18 0,0 P18 0,0	PS	17,3 P9 11,2	P10 8.5 P	11 - P	10 · P1	- PS -	~~~	P8 10,4 P	10.2 P1	63 P1	0,7 P1	3 6,3 P	10,2 P16	10,4	PK 182,9	P9 105,9	P10 198,0	PT1 104.9	Pt: 172,6	10 173,6	PM 170,9
gr 12	2 unt fit 48,7 ft -94,8 ft -104,2 ft -104,2 ft -111,7 ft -111,8 ft -111,0 ft -106,0 ut -111,0 ft -106,0 ut -111,0 ft -106,0 ut -106,0 ut -106,0 ft	8 15 48,1 10 40,5 17 48,5	, PL -	-54,2 P2 -117	P3 -63 1	Fit + F	1 · R	- P2 -		P1 -8,0 P	-6,9 P3	48 14	-0,6 Pt	-2,9 P	4.8 17	-9,0	F1 -122,0	P3 -135,4	P3 -557,5	Pi 433,0	Pit +539,7	Ft -137,9	97 -555.1
	PS 548.0 PS 152.7 PS 960.1 PS 156.5 PS 156.5 PS 156.3 PS 156.5 PS	PT2 0,0 P13 0,0 P14 0,0	P8	17,3 P9 11,2	P10 8,5 P	11 - P	10 · P1	- PS -		P8 10,4 P	10.2 P1	63 P1	0,7 P1	5 6,3 P	10,2 F14	10,4	Pic 176,7	P8 178,1	P10 175,9	Ptt 165,2	Pt; 176,6	P10 178,7 P	P14 176,1
gr 13	N 48.7 P2 494.8 P2 494.8 P3 494.8 P3 496.2 P3 495.7 P3 495.9 P3 415.9 P7 490.0 P 44.3 P3 46.3 P3 46.3 P3 46.1 P3 43.8	8 P5 -40,1 P5 -40,5 P7 -40,3	Pt -	-56,2 P3 -11,7	P3 -82 1	Fit + F	4 - H	- P2 -		P1 -8.0 P	- 6,9 P3	- 48 Pi	-0,4 Pt	-2,9 P	- 48 P?	-9,0	P1 -140,5	P3 -145,3	P8 -151,8	Pi 452,7	PE -157,3	P1 -154,7	PT -150,8
V 12	² ¹⁰⁰ PS 548,0 PS 152,7 PS 560,1 PS 394,5 PS 168,2 PS 168,2 PS 186,5 PS 185,7 ¹ PS 99 PS 0,8 PS 0,0 PS 0,0 PS 0,0	P12 Q,0 P10 0,0 P10 Q,0	00 PS	17,3 Pt 11,2	PK 8.5 P	11 F P	10 + P1	- Pis -	- 00	P8 30,4 P	10.2 P1	43 F1	0,7 Pi	a a a P	10,2 P14	10,4	Px 182,9	PB 165,8	P10 188,0	10.8	PG 172,6	Pia 173,6 P	Pts 170,9
gr 14	1 - 100 円 - 487 円 - 94.8 円 - 154.5 円 - 512.7 円 - 155.9 円 - 111.0 円 - 101.6 ur 円 - 46.3 円 - 46.3 円 - 38.8 円 - 38.8	8 10 40,1 10 40,5 10 568	, PL .	-56,2 P3 -117	P3 -83 1	PK . P	ч., н	. P? .		P1 -8.0 P	-6,9 P3	-48 Pt	-0,4 P	-2,8 P	-48 P7	-9,2	P1 -132,0	P3 -135,4	P8 -150,1	Pi 433,0	PS -158,7	P8 -137,9	PT -150,7
9 14	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Pt2 0,0 P18 0,0 P18 0,0	P8	17,3 P9 11,2	P10 10,2 P	11 - P	10 - Pt	- PS -	11	P8 50,4 P	10.2 P1	8.5 P1	0,7 P1	3 8,5 P	10,2 P14	10,4	Pic 176,7	P9 179,1	P10 176,7	Ptt 165,2	Pt; 176,5	PID 178,7 P	P14 176,1
	, P1 -3.5 P2 -3.5 P3 -4.0 P4 -4.3 P2 -4.3 P3 -4.1 P2 -3.9		P1	-0.8 P7 -4.7	P3 -0.4	PK , P	1 , 11	- P7 -		P1 -7,4 P	-5,6 P1	-43 PI	-0,5 P	-2,5 P	0 -5,6 P?	-7,4	PT -11.5	P2 -8.8	P8 -0,7	PI -4.6	PS -0,0	P1 -67	PT -11,3
gr 15	P 5.7 P3 5.8 P13 6.1 P13 6.4 P1 6.5 P13 6.4 P14 5.5 P13 6.4 P14 6.3		PS	0,9 Pt 08	P10 0.5 P	11 - P	10 + Pt	- PS -	'	P8 8,6 P	8,4 P1	\$2 P1	0,6 P1	5,2 P	1 R/4 F10	9,6	Pic 15,2	Pi 15,0	P10 11.8	Ptt 7,0	PG 117	PI0 14,8 P	P1 14.8
gr 16	A THE PLACE	8 11 -35,1 10 -35,4 17 -35,3	P1 -	41,2 21 -117	PI -66 1	PK . P	ч. н	. P? .	- 25	P1 -7,4 P	-5,6 P3	-43 PI	-0,5 P	-2,5 P	-5,6 P?	-7,4	P1 -110,5	P2 -154,1	P3 -520,0	Pi 425,8	PS -526,1	P8 -120,7	PT -117.9
	Pi 114,0 Pi 117,7 Pi 122,3 Pi 120,7 Pt 122,8 Pi 120,7 Pt 122,9 Pi 126,2 Pi 127,0 Pi 00 Pi 0,0 Pi 0,0 Pi 0,0 Pi 0,0	Pt2 0,0 P18 0,0 P18 0,0	PS	13,2 Pi 12,0	P10 6.9 P	11 - P	10 · Pt	- PS -	- 00	P8 8,6 P	9,4 P1	\$2 P1	0,6 P1	5,2 P	1 8,4 P10	9,6	Pic 125,7	P9 127,8	P10 129,4	Ptt 128,0	Pti 123,4	P10 133,4 P	Pti 151,9
	· · · · · · · · · · · · · · · · · · ·	8 10 -35.1 10 -35.4 17 -35.3	, н.,	41,2 PT -117	Pl 46 1	R , P	1.8	. P? .		P1 -7,4 P	-5,6 P1	-43 PI	-0,3 P	-2,5 P	6 -5,6 P?	-7,4	P1 +922,0	P3 -104,5	P3 -100.9	PI 4043	Pt +507,7	P1 -105,8	PT -104.0
9.17	⁷ ²⁰¹⁰ ro. 514.0 ro. 107.7 ro. 528.8 ro. 528.7 ro. 138.8 ro. 528.2 ro. 527.6 ³³ ro. 99 ro. 6.9 ro. 6.9 ro. 6.0 ro. 6.0	Pro 0.0 Pro 0.0 Pro 0.0	10	18.2 11 12.0	PH 6.0 P	10 . P	10 . 11	· PS ·	· ·	P0 0.6 P	0.4 ***	62 (**	0.6 (**	6.2 1	64 114	0.6	14 196.6	19 188.5	P10 195.4	Pro 100.8	PH 596,0 1	P10 182.6 P	Pto 106.2

QUERKRÄFTE:

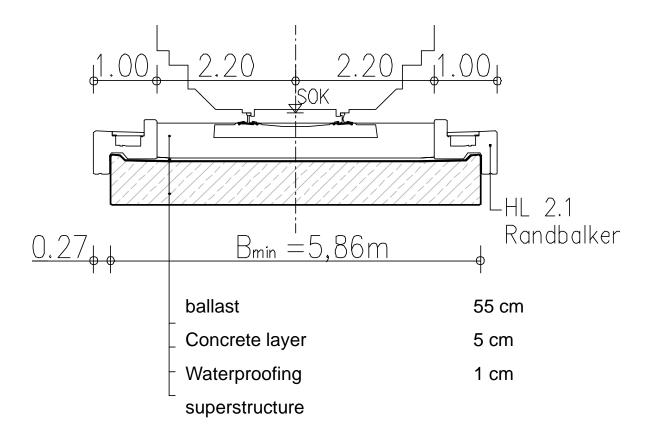

																											81	a ewa	ER LAS	starus	PPEN (FÚ	in que	erkozáfi	10																									
					Vetical	fa startei	(MNIN)										rlehren	Bens	es (1967	4										Filetion	nt (kenne)	4					Γ					9	berwiteð.	[dead]]Г	Ergebnis (Gruppe) (Milm)									
er 11	1.471	P1 101	1.6 P3	190,5	P8 212.7	PH 2	33.6 Pt	244.7	P0 2	27.8 P	207,5		PI 1	ILS P	15	6 P3	13.9	P4	13.2	1 133	P0	15,6	P? 1	6.5		PT 44	A P2	41.4	P3 3	10,5 F	κ.,	Pf		ю	. P	÷.,	- 25	P1	20,0	P2 2	N.1 P	\$ 124	P.E	3,3	17.3	P0 2	16.1 P?	22,0	P1	1 210,2	P2	251.5	P3 25	1.5 Pi	1 38.4	Ph 247,5	5 F1	265.5 (**	235.9
•		PS -	PB	-	P10 -	PII	+ Pt		P18	 P1 	9 v -		P8	- P	÷ •	P10		P11		· 17	P18		P18		~ ,	18 -	P9		PK	 P 	11 +	ΡD		PE	- P	× 8	30	P8		P9	+ P1	× 1	P11		×0 +	Pti	 P16 		P8	8	PB		P10	 P0 	4	PG +	PID	- P1	
gr 12	1.01	P1 101	1,6 P3	199,5	P3 212,7	PH 2	35,6 Pi	244,7	P0 2	27.8 P	237,5		Pt 1	KS P	15/	6 P3	13,9	P4	13,2	13,	20	15,6	P? 1	5	. '	4	4 12	41,4	P3 3	10,5 F	κ,	Pt		20	. P	÷.,		P1	29,0	22	N.1 P	8 10,0	9 PE	3,3	17,3	20	16,1 P?	20,0	P1	1 236,2	P2	258,8	P3 28	IR,5 Pil	M3.5	Pf 259,0	a PE	258,8 (**	235,7
v	1.00	PS -	- PS	-	P80 -	PO	• 9t		#13	- PI	s -		P9	- 8	s -	915	-	Pt1	- 5	÷	¥13	-	Pro-	-	<u>'</u> [ю.	F9		910			PO		Pt)	- P	s -	· ·	**		PB	- 91	÷	#11		×3 ·	9t)	- P14	•	**	ė –	99	-	P10	- BO	4 - 1	AU -	P10	- 95	-
gr 13		P1 101	1,6 P3	199,5	P3 212,7	PH 2	33,6 Pi	244,7	P0 2	27.9 P	237,5		Pt 1	K,S P	15/	6 P3	15,9	P4	13,2	13,	P0	15,6	P7 1	6.5		4	4 12	41,4	P3 3	10,5 F	κ,	Pt		20	. P	÷.,		P1	29,0	22	N.1 P	8 10,0	9 PK	3,3	17,3	20	16,1 P?	20,0	P1	1 210,2	P2	231,3	P3 25	1,5 Pt	4 318,4	Ph 267,5	3 F1	265,5 (**	255,9
•		PS -	PB		P10 -	PII	+ Pt		P18	 P1 	· •		P8	- P	• •	P10		P11		· 13	P18		P16		~ ,	18 -	PB		P10	+ P	11 +	ΡD		PE	- P	× 8		P8		PB	+ P1	×	P11		×0 +	Pti	 P16 		P8	8	PB		P10	 P0 	4	PG +	PID	· P1	
gr 14	1421	P1 101	1,6 P3	199,5	P3 209,0	PH 2	33,6 M	243,9	P0 2	27.8 P	7 207,5	-	Pt 1	ILS P	15/	6 P3	15,9	Pit .	13,2	13,	P0	15,6	P? 1	65	. '	4	4 12	41,4	P3 3	М ,5 Р	α,	Pt		10	- P	, ,		P1	29,0	P2 2	2 1. 1 P	8 93,3	7 94	3,3	18,7	20	16,1 P?	20,0	P1	1 234,2	1 12	258,8	P3 27	8,1 PI	93.5	270,5	5 F1	258,8 197	235,7
<i>v</i>		PS -	- PB	-	P10 -	Ptt	+ Pt		P18	 P1 	· •	9.0	P8	- P	÷ •	P10		P11	- 0	τι -	P18		P18		1 1	× -	P9		P10	- P	11 -	ΡD		PE	- P	× 8		**		P9	+ P1	s; -	P11		· 0	Pt	 P10 		P8	8 -	PB	-	P10	 P0 	4	PE -	PO	- PS	
gr 15	used.	P1 5,0	6 P3	6,1	7,6	PH I	8,2 M	8,4	P0	7,7 P	7,5															F1 2,	9 P3	21	193	1.6 1	× •	PS		10	- 1	7 7	1	#1	10,5	19 1	18,8 14	8 54,3	9 PK	2,7	PS 14,3	P0 1	8,8 17	18,5	P1	24,0	192	28,1	P8 22	<u>61 Pil</u>	10,9	Pi 22,7	F 198	27,6 (*1	22,6
÷		F8 -	- PB	-	P10 -	Ptt	+ Pt		P18	 P1 	· •															P\$ -	P9		PR:	 P 	11 -	ΡD		Pt)	- P	× 8		P 8		P9	+ P1	× 1	P11		×0 +	Pt	 P10 		P8	8 -	P9		P10	 P07 	1	PE -	PD	- PS	
gr 18	1007	P1 111	1,6 P3	126,1	P3 1482	PH 5	96,6 PI	108,8	P0 1	155.8 P	142,9		P1 1	H,S P	3 13,	7 98	12,2	P4	11,0	1 12,	P0	13,7	P7 1	4.5		Pt 20	6 P2	31,2	P8 2	20,6 F		PS		P0	- P	7 - 7	0.5	P1	10,5	P2 1	18.9 P	8 163	9 94	2,7	14.3	P0 1	8,9 P7	18,5	P1	1 149,7	/ P2	102,4	P8 17	9,9 (11	178.0	Pt 199,3	2 PI	178,5 (*)	105,7
v		P3 -	- P8	-	P10 -	Ptt	+ Pt		P18	 P1 	s -	<u> </u>	PS	- P	÷ •	P10		Ptt		τ.	P18		P18		~ F	8 -	P9		P10	. P		ΡD		Pti	- P	× 8	~~	P8		P9	+ P1	×	P11		đ.	Pti	- P10		P8	8 -	P9	-	P10	< P07	4 - 1	PD -	PID	+ P1	
	10001	P1 111	1,6 P3	126,1	P3 1482	PI 5	96,6 Pi	109,9	P0 5	55.8 P	142,9	0.5	P1 1	H,S P	13,	7 98	12,2	PH.	11,6	12,	190	13,7	P7 1	45		P1 20	8 P2	\$1,2	P3 2	20,4 F		PS		R	- P	7 -		P1	18,5	P2 1	18.9 14	8 543	9 94	2,7	14.3	P0 1	8,9 P?	18,5	P1	1 195,0	A P2	192,1	P3 10	10,0 Pi	35,1	Pt 190,2	2 Fil	182,6 (*)	190,7
<i>w</i> 17		PS .	- P8		- 019	Pn	+ Pt		P18	 P1 	· ·	~	P9	- P	۰. ۲	(*1)		P11		τ.	P13		Pro		17	ю,	P9		P10	· P	· ·	20		P11	- P		· ·	**		P9	+ P1	ю,	P11		· 0	(PE)	- P14		P8	8 -	PB	-	P10	, P0		25 +	PID	- PS	



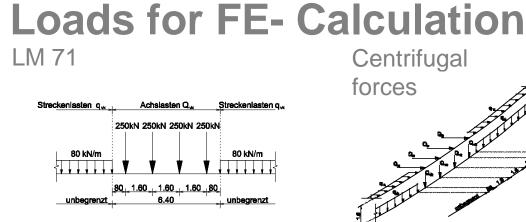
Investigated structures: Longitudinal section

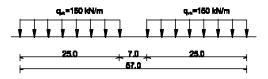
Single-span beam

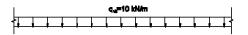
Frame



Span L [m]	2,0	4,0	6,0	8,0	10,0	12,0
slab thickn. [m]	0,3	0,45	0,6	0,8	1,0	1,2

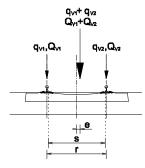

withness L _i [m]	3,0	6,0	9,0	12,0	15,0
slab thickn. [m]	0,45	0,60	0,80	1,00	1,25
wall thickn. [m]	0,45	0,60	0,80	1,00	1,20
hight [m]	2,5	4,7	4,7	4,7	4,7


Investigated structures: Cross Section





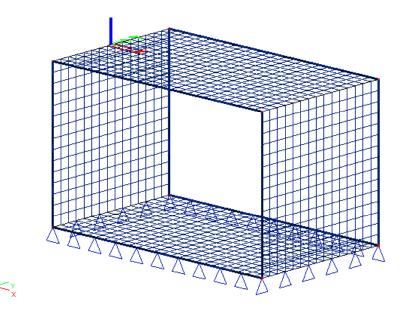
Unloaded train

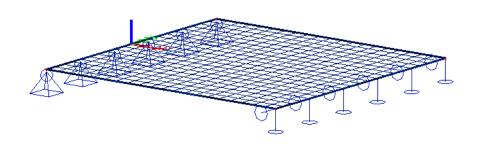


Traction and braking $Q_{lak} = 33 \times L_{a,b}[m] \le 1000[kN]$ $Q_{lbk} = 20 \times L_{ab}[m] \le 6000[kN]$ $Q_{lbk} = 35 \times L_{ab}[m]$

Excentricity of superelevation (cant)

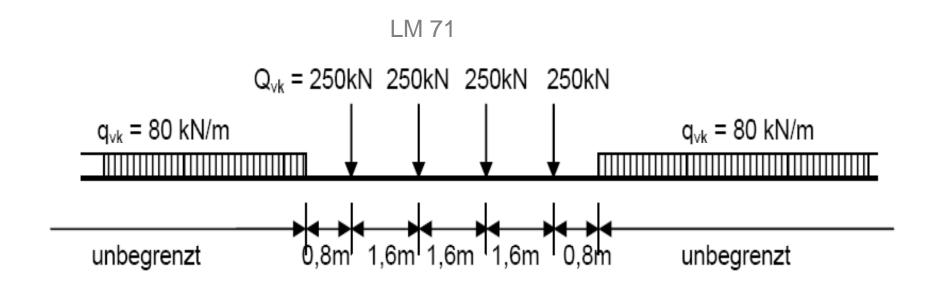
Excentricity of vertikal loads e=r/18


Side Qsk=100kN impact

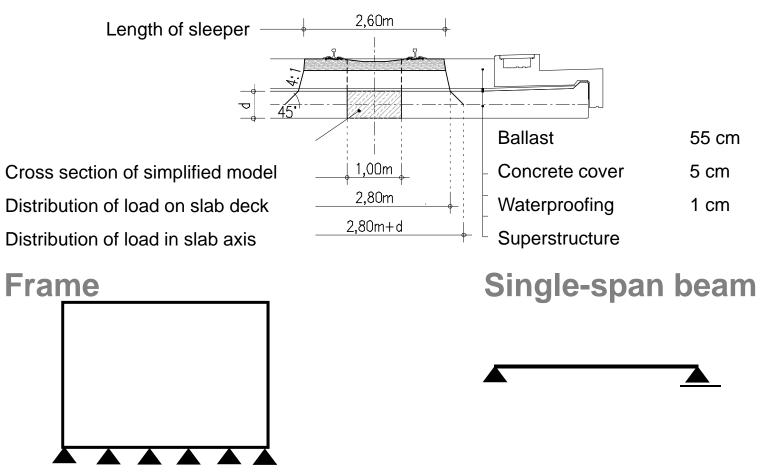

Track set +0,10m -0.10m Load groups gr11 gr14

gr12 ... gr13

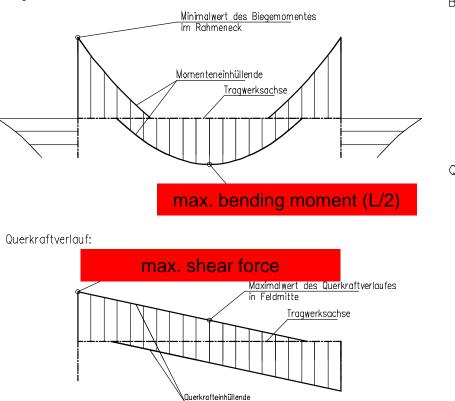
Finite-Element-Calculations

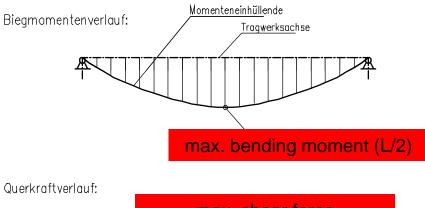


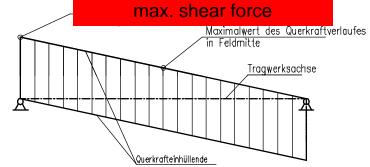
Dr. Markus Vill



Loads for simplified calculation LM 71

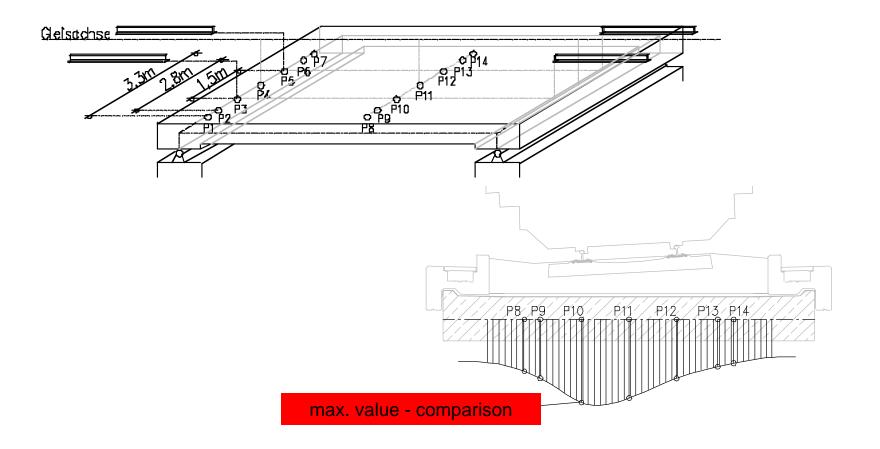

Models for simplified calculation

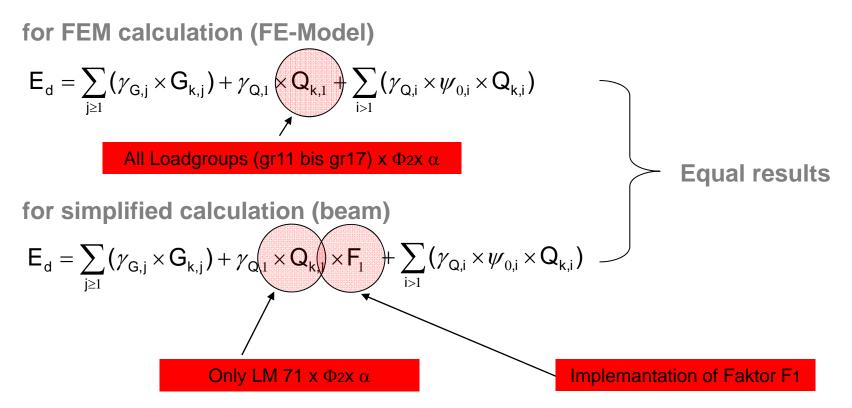




Comparison values of simplified calculationFrameSingle-span beam

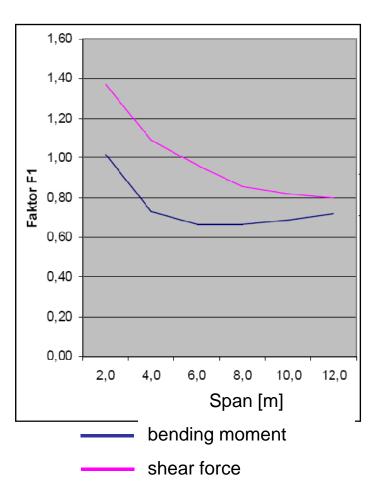
Biegmomentenverlauf:




Comparison values of FEM calculation

Comparison of calculations

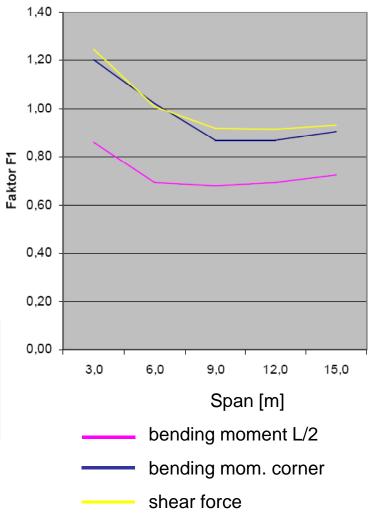
(shear and moment diagrams)



Results of slabs

	Results of bending moment L/2														
Stützweite [m]	γα	α	Φ	Beam model m _{x, LM71} [kNm/m]	FE model m _x [kNm/m]	۶ F1									
2,0	1,45	1,21	1,67	94,0	95,6	1,02									
4,0	1,45	1,21	1,56	269,4	196,6	0,73									
6,0	1,45	1,21	1,42	517,1	344,5	0,67									
8,0	1,45	1,21	1,34	801,1	534,8	0,67									
10,0	1,45	1,21	1,28	1081,4	745,0	0,69									
12,0	1,45	1,21	1,24	1364,5	979,8	0,72									

		Resu	Its of sh	ear force		
Stützweite [m]	γα	α	Φ	Beam model _{V_{x, LM71} [kN/m]}	FE model 9 v _x [kN/m]	F1
2,0	1,45	1,21	1,67	204,5	280,1	1,37
4,0	1,45	1,21	1,56	307,7	335,8	1,09
6,0	1,45	1,21	1,42	375,0	361,1	0,96
8,0	1,45	1,21	1,34	416,0	355,0	0,85
10,0	1,45	1,21	1,28	437,9	358,3	0,82
12,0	1,45	1,21	1,24	453,7	360,9	0,80



Results of frames

		Resul	ts of bei	nding moment co	mer		
Lichte Weite [m]	γα	α	Φ	Beam model m _{x, LM71} [kNm/m]	FE model m _x [kNm/m]	g	F1
3,0	1,45	1,21	1,53	-72,6	-87,3		1,20
6,0	1,45	1,21	1,35	-223,0	-228,1		1,02
9,0	1,45	1,21	1,30	-490,1	-425,4		0,87
12,0	1,45	1,21	1,26	-774,2	-673,5		0,87
15,0	1,45	1,21	1,24	-1041,1	-940,8		0,90
		Result	s of ber	ding moment L/2			
Lichte Weite							
[m]	γο	α	Φ	Beam model m _{x. LM71} [kNm/m]	FE model m _x [kNm/m]	g	F1
[m] 3,0	γ ₀ 1,45	α 1,21	Φ 1,53			g	F1 0,86
		-	·	m _{x. LM71} [kNm/m]	m _x [kNm/m]	g	
3,0	1,45	1,21	1,53	m _{x. LM71} [kNm/m] 129,8	m _x [kNm/m] 111,4	g	0,86
3,0 6,0	1,45 1,45	1,21 1,21	1,53 1,35	m _{x. LM71} [kNm/m] 129,8 374,4	m _x [kNm/m] 111,4 259,7	g	0,86 0,69

		Results	of shea	r force		
Lichte Weite [m]	γα	α	Φ	Beam model v _{x, LM71} [kN/m]	FE model 9 V _x [kN/m]	F1
3,0	1,45	1,21	1,53	266,8	332,2	1,25
6,0	1,45	1,21	1,35	388,9	392,2	1,01
9,0	1,45	1,21	1,30	473,9	434,4	0,92
12,0	1,45	1,21	1,26	526,6	480,4	0,91
15,0	1,45	1,21	1,24	561,2	521,7	0,93

Conclusions

- Eurocodes are good bases for the design of any type of bridges
- However, the resulting effort for the calculation of simple structures is disproportional high
- Therefore: Proposal for simplification:
 - Simplification of load configurations (e.g., reduction of loadcombinations, loadgroups)
 - Implementation of faktor F1 multiplied by LM71 for usual railway bridges
- Advantages:
 - Less effort of calculation process for same result and quality
 - Greater acceptance of Eurocodes by users
 - Increase of the practical suitability of EC`s

Austrian Experience using Eurocode 2, Concrete Bridge Design

Dr.techn. Markus Vill

Engineering Services, Bridge Departement, ÖBB markus.vill@oebb.at