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Design of steel-bridges
Overview of key content of EN 1993-Eurocode 3 

Illustration of basic element designg

G. Hanswille, W. Hensen, M. Feldmann, G. Sedlacek 
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SURVEY OF THE EUROCODES

EN 1990
Eurocode: Basis of Design
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1-1 Self weight
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EN 1992 to EN 1996
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1-3 Snow
1-4 Wind
1-5 Thermal Actions

Eurocode 3: Steel structures
Eurocode 4: Composite structures
Eurocode 5: Timber structure
Eurocode 6: Masonry structures

1 5 Thermal Actions
1-6 Construction Loads
1-7 Accidential Actions
2 Traffic on bridges
3 Loads from cranes EN 1997 and EN 19983 Loads from cranes
4 Silo loads

EN 1997 and EN 1998
Eurocode 7: Geotechnical Design
Eurocode 8: Design in seismic areas

EN 1999EN 1999
Eurocode 9: Aluminium structures
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1. THE EUROPEAN STANDARD FAMILY AND STEEL BRIDGES

hEN
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Eurocode 1: EN 1991 – „Actions on structures“
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1. THE EUROPEAN STANDARD FAMILY AND STEEL BRIDGES
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1. THE EUROPEAN STANDARD FAMILY AND STEEL BRIDGES
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Design rules for steel bridges in Eurocode 3



Dissemination of information for training – Vienna, 4-6 October 2010 10

1. THE EUROPEAN STANDARD FAMILY AND STEEL BRIDGES

Limit State Concept
ULS Ed     Rd
SLS Ed  CdSLS Ed  Cd
Fatigue E  c

Choice of material
b d f t h ibased on fracture mechanics 
(EN 1993-1-10)

Stability of members and plates
Si l  l f bi dSingle -value for combined 
actions,
FEM-methods
(EN 1993-1-1) (EN 1993-1-5)

Fatigue assessments unless
recommended details are used 

(EN 1993-2) (EN 1993-1-9)

Basic features of design rules for bridges
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2. LOAD ASSUMPTIONS FOR STEEL BRIDGES

900 kN

500 kN

2 kN275 kN

11,0 m11,0 m

Load-model LM1
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2. LOAD ASSUMPTIONS FOR STEEL BRIDGES

1000 kN
12

600 kN

300 kN

6

3

11,0 m

3

Load-model LM1 (draft German NA)
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2. LOAD ASSUMPTIONS FOR STEEL BRIDGES

Statistical distribution of characteristics of vehicle
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2. LOAD ASSUMPTIONS FOR STEEL BRIDGES

Modelling of vehicles and surfaces
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2. LOAD ASSUMPTIONS FOR STEEL BRIDGES

Modelling of bridges 
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2. LOAD ASSUMPTIONS FOR STEEL BRIDGES

Load-model and simulations
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2. LOAD ASSUMPTIONS FOR STEEL BRIDGES

Dynamic effectsDynamic effects 
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2. LOAD ASSUMPTIONS FOR STEEL BRIDGES

K 210 K 138

Reference bridges for reliability analysis 
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2. LOAD ASSUMPTIONS FOR STEEL BRIDGES

Definition of target -value
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2. LOAD ASSUMPTIONS FOR STEEL BRIDGES

P r o b a b i l i s t i c d e s i g n E C 1 - P a r t 2 L o a d M o d e l
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2. LOAD ASSUMPTIONS FOR STEEL BRIDGES

Q-values from LM1
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2. LOAD ASSUMPTIONS FOR STEEL BRIDGES

Effect of modification: aQ1q1K = 9  8 kN/m²
Effect of modification: aQ2q2K = 2,5  5 kN/m²
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2. LOAD ASSUMPTIONS FOR STEEL BRIDGES

Forecast of freight-volume
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2. LOAD ASSUMPTIONS FOR STEEL BRIDGES

Development of permits for heavy vehicles
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2. LOAD ASSUMPTIONS FOR STEEL BRIDGES

Results of WIM-measurements in NL
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2. LOAD ASSUMPTIONS FOR STEEL BRIDGES

Fatigue load model specified in EN 1991
  480 kN

 

Traffic Category Number of heavy vehicles N 
1: 2-Lane Highways with a high rate of 

heavy vehicles 2 • 106 / a

Number of expected trucks 
per year for a single lane

heavy vehicles
2: Highways and roads with a medium 

rate of heavy vehicles 0,5 • 106 / a 

3: Main roads with a low rate of heavy 
vehicles 0,125 • 106 / a 

4: Country roads with a low rate of 
heavy vehicles 0,05 • 106 / aheavy vehicles

Fatigue loading model FLM 3
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2. LOAD ASSUMPTIONS FOR STEEL BRIDGES
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2. LOAD ASSUMPTIONS FOR STEEL BRIDGES

Fatigue details – welded attachments and stiffeners

EN 1993-1-9 - Fatigue resistance
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2. LOAD ASSUMPTIONS FOR STEEL BRIDGES

Required moment of inertia from ULS and fatigue design for detail 
category 71
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2. LOAD ASSUMPTIONS FOR STEEL BRIDGES

Joint for hanger
Alternatives for joints of hangers:

ti i d j i toptimised joint:
• continuously increasing stiffness (K90)

 low curvature from bending
• end of hanger with hole and inclined cut

l t t d f h f low stresses at end of hanger for 
K50

• ratio of inclined cut and connecting plate
 avoiding of stress peak at end of 

hhanger

Recommendations for durable detailing
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2. LOAD ASSUMPTIONS FOR STEEL BRIDGES

Hanger connection for arch bridges

1

2

3

4

Substitution of fatigue checks for critical details
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2. LOAD ASSUMPTIONS FOR STEEL BRIDGES

Standard orthotropic steel deck with continuous stringers with 
cope holes in the web of the cross beam

Substitution of fatigue checks by structural detailing 
rulesrules
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2. LOAD ASSUMPTIONS FOR STEEL BRIDGES

Structural detailing for deck plate

connection of deck plate to troughsp g
75

12
HV HV HV

14

300 300 300

design life load model 4
without layer < 10 years

asphaltic
sealing
PmB 45

30 - 50 years für t = 12 mm

PmB 45
thermosetting

resin
PmB 25

70 - 90 years

Recommended details of orthotropic deck
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2. LOAD ASSUMPTIONS FOR STEEL BRIDGES

Structural detailing for cross beams

h

75

12
T

tSteg

T

25
> 0,15 hT hQTr

Steg

tLtrough = 6 mm
tweb = 10 - 16 mm;   verification of net web section required
hcrossbeam  700 mmcrossbeam
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2. LOAD ASSUMPTIONS FOR STEEL BRIDGES

Potential positions of cracks in the asphalt layer

Durability of asphalt layer
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2. LOAD ASSUMPTIONS FOR STEEL BRIDGES

Steel bridges – serviceability limit state

Requirements for the minimum stiffness of stringers 
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2. LOAD ASSUMPTIONS FOR STEEL BRIDGES

Verification to

Plate buckling

longitudinal edge xDefinition of a plated
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2. LOAD ASSUMPTIONS FOR STEEL BRIDGES
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3. MODELLING OF STEEL BRIDGES

Shear lag effect
b

==+

GS
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3. MODELLING OF STEEL BRIDGES

Subdivision of a moment-distribution to elements with standard shape
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3. MODELLING OF STEEL BRIDGES

-factor for shear lag
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3. MODELLING OF STEEL BRIDGES

Differences in modelling

Modelling for ULS Modelling for fatigue
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3. MODELLING OF STEEL BRIDGES

Differences in modelling

Fatigue effects on web stiffenersModelling for ULS 
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3. MODELLING OF STEEL BRIDGES

Differences in modelling

Frame and distorsional effectsModelling for ULS 
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4. SPECIFICATION FOR BEARINGS

Design principles for individual bearings

- Permission of movements minimizing the reaction forces 
- No tensile forces 

N i ifi t di t ib ti f f t th b i- No significant redistribution of forces to other bearings
from accomodation to installation tolerances 

- Specification of installation conditions with detailsp
of construction sequence and time variable conditions 

- Measure to avoid unforeseen deformation of the bearings
(non uniform contact)(non uniform contact) 
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4. SPECIFICATION FOR BEARINGS

Construction documents

 Bearing plan (drawing of the bearing system)
 Bearing installation drawing (structural details)
 Bearing schedule (characteristic values from eachBearing schedule (characteristic values from each 

action, design values from combination of action)



Dissemination of information for training – Vienna, 4-6 October 2010 47

4. SPECIFICATION FOR BEARINGS

sliding rolling deforming

displace-
ment

rotation

Functional principles of bearings
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4. SPECIFICATION FOR BEARINGS
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4. SPECIFICATION FOR BEARINGS
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4. SPECIFICATION FOR BEARINGS

No. Action Eurocode 

R f t t t T DIN EN 1991 1 5 2004 07

Actions for permanent and transient design situations 

Reference to temperature T0 DIN EN 1991-1-5:2004-07

1.1
1.2
1.3

1.4

Self-weight
Dead loads 
Prestressing

Creep concrete 

DIN EN 1991-1-7:2007-02
DIN EN 1991-1-7:2007-02
DIN EN 1992-1:2005-10 and
DIN EN 1994-2:2006-07
DIN EN 1992-1:2005-10

1.5 Shrinkage of concrete DIN EN 1992-1:2005-10

2.1
2.2
2.3
2.4
2.5

Traffic loads
Special vehicles 
Centrifugal forces
Nosing forces 
Brake and acceleration forces 

DIN EN 1991-2:2004-05
DIN EN 1991-2:2004-05
DIN EN 1991-2:2004-05
DIN EN 1991-2:2004-05
DIN EN 1991-2:2004-05

2.6
2.7
2.8
2.9
2.10
2.11
2 12

Footpath loading 
Wind on structure without traffic 
Wind on structure with traffic
Range uniform temperature 
Vertical temperature difference 
Horizontal temperature difference
Soil Settlements

DIN EN 1991-2:2004-05
DIN EN 1991-4:2005-07
DIN EN 1991-4:2005-07
DIN EN 1991-1-5:2004-07, 6.1.3 and 6.1.5
DIN EN 1991-1-5:2004-07, 6.1.4 and 6.1.5
DIN EN 1991-1-5:2004-07, 6.1.4 and 6.2
DIN EN 1997 1:2009 092.12

2.13
2.14
2.15
2.16

2.17

Soil Settlements
Bearing resistance/friction forces 
Replacement of bearing 
Pressure and suction from traffic 
Wind during erection 

Construction loads 

DIN EN 1997-1:2009-09
DIN EN 1337, Part 2 to 8
DIN EN 1991-2:2004-05
DIN EN 1991-2:2004-05
DIN EN 1991-4:2005-07 and
DIN EN 1991-1-6:2005-09
DIN EN 1991-1-6:2005-09

2.18 Accidental actions DIN EN 1991-1-7:2007-02

 For transient design situations reduction of variable actions due to limited duration  EN 1991-2, 4.5.3. For steel
bridges also actions from installation of hot asphalt according to technical project specifications.
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4. SPECIFICATION FOR BEARINGS

Actions in accidental design situations 

• Specifications according to EN 1991-2

• Limitation of bridge movements by structural measuresLimitation of bridge movements by structural measures,
e.g. stop devices at abutments 

Actions in seismic design situations 

Specifications according to EN 1998-1 and EN 1998-2
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4. SPECIFICATION FOR BEARINGS

Determination of design values of movements and bearing forces 
Principles

C bi i di EN 1990 6 5 3 2 (2) i h i l f di Combination according to EN 1990, 6.5.3.2 (2) with partial factors according to
EN 1990, A.2 and particular rules for climatic temperature effects

 Movements due to creep and shrinkage by multiplying mean values inMovements due to creep and shrinkage by multiplying mean values in
EN 1992-2 and EN 1994-2 by a factor of 1.35

 Verification of static equilibrium (uplift of bearings) and anchoring devices
b l i  0 05 G iby applying  0.05 GK spanwise

 Consideration of deformations of foundation, piers and bearings in the
modelling of the structure, see EN 1991-2, 6.5.4.2g

 Use of 2nd order theory for accounting for deformations of piers after 
installation of bearings if required by EN 1992-1-1, 5.8.2 (6).
For calculation of pier deformations k = 0 5 may be applied to geometricFor calculation of pier deformations ky = 0,5 may be applied to geometric
member imperfections in EN 1992-1-1, 5.2. 
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4. SPECIFICATION FOR BEARINGS

Determination of design values of movements and bearing forces

Maximum and minimum constant temperature component: 
Climatic temperature effects

Ted min = T0 - F  TN con - T0Ted, min  T0  F TN,con  T0
Ted, max = T0 + F  TN,exp + T0

additional safety element
charact. Values EN 1991-1-5, 6.1.3.3

partial factor F = 1,35partial factor F  1,35

reference temperature during installation of the bearings, e.g. +10°C

Table E.4: Recommended values for T0

T [°C]
Case Installation of bearing

T0 [°C]

steel bridges composite bridges concrete bridges

1 Installation with measured Temperature and with correction
Resetting with bridge set at T0

0 0 0

2 Installation with estimated T0 and without correction by 10 10 102 0
resetting with bridge set T0

10 10 10

3
Installation with estimated temperature T0 and without 
correction by resetting and also one ore more changes in 
position of the fixed bearing

25 20 20

Td = Ted max - Ted minTd  Ted,max Ted,min
For non-linear behaviour stepwise determination 

Td = F  TN
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4. SPECIFICATION FOR BEARINGS

Reaction forces at fixed points resulting form resistance of the bearing system 
For sliding bearings:

   kiiQikiQkG QQG 01   
  












kGr

kiiQikiQkGa
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QQG
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d
inf,

01sup,
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Forces from 
l ti d

other variable actions
vertical actions of traffic load

self weight, dead loadsacceleration and 
braking

self weight, dead loads
coefficient of friction according EN 1337-1, 62.
For PTFE sliding bearings max = 0,03

For elastomeric bearings













inf,,infinf

sup,,supsup
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Shear deformations of the bearings
forces from 
acceleration 
and braking

i l l f h d l

Shear deformations of the bearings 
according EN 1337-3

plan shear area of bearings

nominal values of shear modulus 
Gsup = 1,05 N/mm2

Ginf = 0,75 N/mm2
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Choice of materialChoice of material 5. CHOICE OF MATERIAL

Assumption for a0





  102faa

63
c

initial crack

fatigue loading








4

faa 0d

a0

ad

design crack

initial crack

Safety assessment based on fracture mechanics

Kappl d  Kmat dappl,d mat,d

Kmat,d (T27J, TEd)

Kappl,d (member shape, ad, 1·Ed)
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5. CHOICE OF MATERIAL

Toughness-temperature - Load-strain-diagram

Design situations in the upper-shelf region B and the transition region A of the 
toughness-temperature diagram
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5. CHOICE OF MATERIAL

Assessment scheme

K*appl,d  Kmat,d TEd  TRdTransformation
Safety assessment based on temperature

TEd = Tmin + Tr + T + TR [T + Tpl ] TRd = T100

TEd  TRd ResistanceAction side

Assessment scheme

Ed min r  R [  pl ] Rd 100

• Influence of material toughness
T100 = T27J – 18 [°C] 

• lowest air temperature in combination               
with Ed:

Tmin = -25 °Cmin
• radiation loss:

Tr = - 5 °C
• influence of stress, crack imperfection 

and member shape and dimension:

]C[
70

10
25
b

20
k
K

ln52T

41
eff

6R
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• additive safety element:
TR = +7 °C (with  = 3,8)
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5. CHOICE OF MATERIAL

Choice of material to EN 1993-1-10
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5. CHOICE OF MATERIAL

National quality tests

AUBI-test according to SEP 1390 (1996)
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5. CHOICE OF MATERIAL

trend analysis for the AUBI correlation
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5. CHOICE OF MATERIAL

Choice of material given in Table 3.1 of EN 1993-2
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5. CHOICE OF MATERIAL

Example: Thick plates for the composite “Elbebridge Vockerode“ (EN 1993-1-10)

Bridge system and construction

Cross section

Span
Upper chord

Support Support

Plate thickness for S355 J2G3

Upper chord

Bottom plates

75 75   115 135 115 85 85  60  60 60   115 140 145 140 115   60 60   60   85 85 115 135 115     75 75145

Construction at supports
125,28

p

40

30    70 30      7070  95  45 70   95 45

40

50 70 50

40
70

40

Construction at supports
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5. CHOICE OF MATERIAL

Bridge St. Kilian
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5. CHOICE OF MATERIAL

Bridge St. Kilian
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5. CHOICE OF MATERIAL

Cast node for the bridge St. Kilian
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5. CHOICE OF MATERIAL

Cast node for the bridge St. Kilian
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5. CHOICE OF MATERIAL
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6. DESIGN OF BRIDGE-ELEMENTS
6.1 STABILITY RULES

Ed

Common design rules for column, lateral torsional, plate and shell buckling
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Ed Ed
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6.1 STABILITY RULES

Column buckling



Dissemination of information for training – Vienna, 4-6 October 2010 70

6.1 STABILITY RULES

Column buckling curves
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6.1 STABILITY RULES

Selection of buckling curves
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6.1 STABILITY RULES

Test evaluation – weak axis buckling
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6.1 STABILITY RULES

Test evaluation – weak axis buckling
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6.1 STABILITY RULES

M-values according to EN 1990 – Annex D
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6.1 STABILITY RULES

European buckling curve 2nd order theory with imperfection 
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6.1 STABILITY RULES

  
d d d 

dg 

M-values for 2nd order analysis

0,5 0,685 0,870 0,477 0,661 0,895 1,03

1,0 1,136 0,597 0,953 1,082 0,627 1,05

1 5 1 846 0 342 1 43 1 734 0 369 1 081,5 1,846 0,342 1,43 1,734 0,369 1,08

2,0 2,806 0,209 1,906 2,605 0,228 1,09

3,0 5,476 0,10 2,859 5,039 0,109 1,09
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6.1 STABILITY RULES

Imperfections for members with various boundary conditions
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6.1 STABILITY RULES

Example for a column on elastic supportsExample for a column on elastic supports
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6.1 STABILITY RULES

Column buckling Lateral torsional buckling
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6.1 STABILITY RULES

Comparison of LTB-curves

1,0

LT 

Lateral torsional buckling 
for GIT=oo

Lateral torsional 
buckling for a beam
HEB 200

B b

Bc a

0 0

Bc b

0,0
0,0 1,0 2,0LT 
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6.1 STABILITY RULES

k
kult E

R
,1. Input parameters:

Procedure for lateral torsional buckling assessments using the buckling curves: 

dE

d

crit
crit E

R


critt

kult




 ,





 
crit

*
crit*

2. Modification of imperfection factor:
critt

*
crit DIG 

  2* 20150  

where is determined without effect of

3. Use of flexural buckling curve:

  2,015,0  

4 Assessment for design point x

22

1
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4. Assessment for design point xd
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6.1 STABILITY RULES

Comparison of laterial torsional buckling curves 
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6.1 STABILITY RULES

check:

crit

kult




 ,

  ,*

check:

Determination of design point xd
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6.1 STABILITY RULES

Example: Portal frame

1068

knee‐pointLateral support

3 4
240∙12
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2 5
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6.1 STABILITY RULES

1 55
Moment distribution [kNm]

ult,k,min=1,55

ult,k (xd)=1,94

Distribution of compression forces [kN]
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6.1 STABILITY RULES

Example: Modal out-of-plane deformation crit=1.85

xd
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6.1 STABILITY RULES

1. Calculation with extreme value ult,k,min 2. Calculation design point xd

55.1, kult 94.1, kult

85.1crit

84.1* crit
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55.1
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*  
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50.0622.0
2

1
2  



225.1LT

50.059.0 
22  



00.188.0
10.1

55,1622.0







M

ult




contact splice sufficient 



00.104.1
10.1

94.159.0, 





M

kult




contact splice sufficient 
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Check of out-of-plane stability
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6.1 STABILITY RULES

Example: Composite bridge



Dissemination of information for training – Vienna, 4-6 October 2010 89

6.1 STABILITY RULES

Example: Cross-section of the composite bridge 
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6.1 STABILITY RULES

Example: Moment distribution critical for out-of-plane stability of main girders 
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6.1 STABILITY RULES

Example: cross-beam at supports 
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6.1 STABILITY RULES

Example: intermediate cross-beam all 7,50 m
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6.1 STABILITY RULES

Example: crit-values and modal out-of-plane deformations 

critical area

critical area

critical area
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6.1 STABILITY RULES

Example: Input for ult,k-values 

295
330

250

180

critical areas
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6.1 STABILITY RULES

in field at point P1 at support (point P1)

Checks for lateral-torsional buckling 

in field at point P1 at support (point P1)

83,1
180
330

k,ult  184,1
250
295

k,ult 

8576,8crit 

45,0
8576,8
83,1
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4917
20,15* 

69,0

82,0

49,17
554,0

96,0

00,137,1
10,1

89,182,0

M

k,ult 








00,103,1
10,1

184,196,0

M

k,ult 










Dissemination of information for training – Vienna, 4-6 October 2010 96

6.1 STABILITY RULES

Column-like behaviour:

Column buckling and plate buckling 

imposed loads
on loaded edge 

resulting displacements i
at loaded edge 

Plate-like behaviour:

resulting loads
on loaded edge 

imposed displacement 
on loaded edge 



Dissemination of information for training – Vienna, 4-6 October 2010 97

6.1 STABILITY RULES

Example: Torsional buckling according to EN 1993-1-1
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6.1 STABILITY RULES

Torsional buckling column-like behaviour plate-like behaviour

compression compressioncompression
stress

compression
strain
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6.1 STABILITY RULES

 ~
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6.1 STABILITY RULES

 *

Column buckling curve and plate buckling curve

 ,,
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6.1 STABILITY RULES

x

Stress- and strain-controlled plate buckling 

x

imperfect
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x xx E  perfect

imperfect

imperfect
xx E  

x
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6.1 STABILITY RULES
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Modification of imperfection factor
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6.1 STABILITY RULES
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6.1 STABILITY RULES

“Hybrid cross-section” due to different stress-limits

yield plateau

resulting force

yield plateau
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6.1 STABILITY RULES

”Yielding effect” in hybrid cross-sections

Method 1

Method 2
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6.1 STABILITY RULES

Method 1

”Yielding effect” in bending

Method 2
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6.1 STABILITY RULES

Extension of method 2
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Choice of materialChoice of material 6.1 STABILITY RULES

Methods in bridge design

Method 1

Use of effective cross-section

Method 2

Use of stress-limit                  
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6.1 STABILITY RULES

Method 1

l t b kli f t t

Method 2

l b l l t b kliplate buckling for stress components global plate buckling

 Ed 
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6.1 STABILITY RULES

Method 1 Method 2

Plate-buckling coefficients

Method 1 Method 2
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6.1 STABILITY RULES

Cross-section assessment

Method 1: Effective cross-section for x
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6.1 STABILITY RULES

rigid end flexible end
t

Method 1: Resistance to shear 
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6.1 STABILITY RULES

Method 1 Method 2

Assessment for plate buckling
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6.1 STABILITY RULES

German National Annex

 Method 1 only applicable to girders without longitudinal
stiffners

 The use of Method 1 should be supplemented by The use of Method 1 should be supplemented by
checking global buckling with Method 2 for
characteristic load level andkE 10,1M 
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Example: cross-section check for a composite bridge

Cross-section at support Cross-section at midspan
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6.1 STABILITY RULES

Panel plate buckling check with method 2
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6.1 STABILITY RULES

Verification of stiffened web plate for launching, Bridge Oehde 
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6.1 STABILITY RULES

Stiffened web panel and loading 
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6.1 STABILITY RULES

Use of method 2 for stress-assessment

kNmM 3,44max  MPa24022068152 

kNmM 83,2max  MPa24024017664 

Stiffener : 

Webplate: 
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6.1 STABILITY RULES
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6. DESIGN OF BRIDGE-ELEMENTS
6.2 FATIGUE RULES

Standardized Wöhler- curve for welded details
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6.2 FATIGUE RULES
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6.2 FATIGUE RULES

Reservoir-counting method



Dissemination of information for training – Vienna, 4-6 October 2010 124

6.2 FATIGUE RULES

Case 1

Various design situations

Case 2

M difi d

Case 3

Modified 
Wöhler curve
for using the
Miner-rule
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6.2 FATIGUE RULES

Representations of fatigue spectrum

spectrum for design      

after vibrations   

cut off

cut off
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6.2 FATIGUE RULES

Distribution of weights of heavy vehicles

total weight type 1 total weight type 2total weight type 1 total weight type 2

total weight type 3 total weight type 4
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6.2 FATIGUE RULES

Load-models for fatigue checks of road bridges

FLM 3
Main structure

Detailed FLM 4
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6.2 FATIGUE RULES

Safety-plan for damage tolerant design
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6.2 FATIGUE RULES

Mean value m

Characteristic value: m – 1 645 Characteristic value: m – 1,645 

Design value:

C t l f ti 15122 5Control of actions

No control of actions

15,122 5  MfN

35,150,45,4 5  MfN
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6.2 FATIGUE RULES

Assessment procedures
c

EFf


 2

Use of -values

 
Crossing of FLM3

Mf
EFf 
 2

4321 

 minmax2  E

g

stress history

ti th d

effects of 
other lanes

counting method

Miner-rule

design life

other lanes
2E

span length

traffic composition
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6.2 FATIGUE RULES

1 value from simulations with Auxerre traffic
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6.2 FATIGUE RULES

Example: Fatigue assessment for a composite bridge
 = 1.947  = 1.947

 = 1.90  = 1.715  = 1.90

31.3

23.6
1

22

stress ranges (max – min) at lower flangest ess a ges (max min) at o e a ge

Transverse weld from stiffener:1
2 Butt weld of flange:

MPaE 805.593.319.12 

MPaE 778.446.269.12 
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6.2 FATIGUE RULES
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6. DESIGN OF BRIDGE-ELEMENTS
6.3 ROPE STRUCTURES

Rope-structures   - Stayed cable bridges

Definition

• Any prestress  is generated by preloadingy p g y p g

• Preloading is a process to impose
• forces or
• deformations

• The effects of preloading may be 
i ti f t ( t )• variations of stresses (prestress)

• variations of deformations
• other variations of permanent stage 
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6.3 ROPE STRUCTURES

1a) Prestressing by internal 1b) Prestressing of trusses by

Examples for preloading processes




1a) Prestressing by internal
tendons

1b) Prestressing of trusses by
cables in hollow sections



1c) Prestressing by external
tendons

1d) Prestressing of joints
subjected to tension or friction
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6.3 ROPE STRUCTURES

2) Prestressing by propping 4) Prestressing by imposed deformation

Examples for preloading processes

d

steel

d

steel

cast of concrete cast of concrete

composite composite

phase 1 phase 2 phase 1

3) Prestressing by sequence of casting concrete
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6.3 ROPE STRUCTURES

5a) Prestressing of 5b) Prestressing of

Examples for preloading processes

) g
cable structures

) g
arches by string-elements

 

b ow -st rin g



 

5c) Prestressing of guyed
masts

5d) Prestressing of cable
stayed structures
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6.3 ROPE STRUCTURES

Principles

f• It is possible to define the preloading or prestressing
process by all necessary steps including controls

• It is not possible to define “prestress” as an effect of prestressing
or preloading in a general way, that covers all cases 
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6.3 ROPE STRUCTURES

Example for the applicability of “prestress”

stress before prestresses: 0,0 lq

stress immediately after prestressing: 

prestress: 

lq ,0

00000   llll p es ess 0,0,0,0,0  lqlqllq 
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6.3 ROPE STRUCTURES
of

 
ca

bi
lit

y 
o

n-
ap

pl
ic

r t
he

 n
on

m
pl

e 
fo

r
st

re
ss

”
E

xa
m

“p
re

s



Dissemination of information for training – Vienna, 4-6 October 2010 141

6.3 ROPE STRUCTURES

Conclusion

“P” in EN 1990

a) preloading or prestressing process leading to a 
structural shape or behaviour as required

b) prestress in specific cases where defined 
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6.3 ROPE STRUCTURES

Treatment of preloading and prestressing processes in the 
construction phase

Target: attainment of the required structural form
and distribution of effects of (G+P)

Conclusion: calculation with characteristic values, linear
material law: 
stress limitations and prestressing of cables. 
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6.3 ROPE STRUCTURES

Treatment of preloading and prestressing processes in the 
construction phase
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6.3 ROPE STRUCTURES

Treatment of preloading and prestressing processes in the 
service phase

Target:  ULS verification on the basis of:
• permanent actions G(G+P)pe a e ac o s G(G )
• permanent from resulting from (G+P)
• imperfections of the form
• variable actions  {Q +  Q }• variable actions Q{QK1 + 0QQ2}

C l i C l l ti ith th t f i t dConclusion: Calculation with the permanent form associated 
with the effect from G(G+P)
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6.3 ROPE STRUCTURES

Treatment of preloading and prestressing processes in the 
service phase
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6.3 ROPE STRUCTURES

Treatment at counterflexure points

Treatment at counterflexure points, or where the action 
effects from (G+P) are limited (e g by decompression):effects from (G+P) are limited (e.g. by decompression):

G = G,  where 0,05    0,10 

applied to influence surfaces. 



Dissemination of information for training – Vienna, 4-6 October 2010 147

6.3 ROPE STRUCTURES
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7. ASSESSMENT OF EXISTING STEEL BRIDGES


