Design of steel-bridges

Overview of key content of EN 1993-Eurocode 3 Illustration of basic element design

G. Hanswille, W. Hensen, M. Feldmann, G. Sedlacek

LIST OF CONTENTS

- 1. The European Standard Family and Steel bridges
- 2. Load assumptions for steel bridges
- 3. Modelling of steel bridges
- 4. Specification of bearings
- 5. Choice of steel
- 6. Design of bridge elements
 - 6.1. Stability rules
 - 6.2. Fatigue rules
 - 6.3. Rope structures

CROSS SECTION OF A BOX GIRDER BRIDGE WITH AN ORTHOTROPIC DECK

Dissemination of information for training – Vienna, 4-6 October 2010

HASELTALBRÜCKE SUHL

Dissemination of information for training – Vienna, 4-6 October 2010

NAVIGATION THROUGH STANDARDS

Dissemination of information for training - Vienna, 4-6 October 2010

SURVEY OF THE EUROCODES

Dissemination of information for training – Vienna, 4-6 October 2010

EN 1990 Eurocode: Basis of Design			
EN 1991 Eurocode 1: Actions on Structures 1-1 Self weight 1-2 Fire Actions 1-3 Snow 1-4 Wind 1-5 Thermal Actions 1-6 Construction Loads 1-7 Accidential Actions 2 Traffic on bridges	EN 1992 to EN 1996 Eurocode 2: Concrete structures Eurocode 3: Steel structures Eurocode 4: Composite structures Eurocode 5: Timber structure Eurocode 6: Masonry structures		
3Loads from cranesEN4Silo loadsEurocode 7Eurocode 8Eurocode 8	1997 and EN 1998 Geotechnical Design Design in seismic areas		

EN 1999 Eurocode 9: Aluminium structures

Dissemination of information for training - Vienna, 4-6 October 2010

Dissemination of information for training - Vienna, 4-6 October 2010

Tasks for designer and contractor

Dissemination of information for training – Vienna, 4-6 October 2010

	EN 1993-Part 2	Steel bridges	
	Annex A	Requirements for bearings	-
L	Annex B	Requirements for expansion joints	
	Annex (Recommendations for orthotropic plates	J

Design rules for steel bridges in Eurocode 3

Dissemination of information for training - Vienna, 4-6 October 2010

(EN 1993-2) (EN 1993-1-9)

Basic features of design rules for bridges

Dissemination of information for training – Vienna, 4-6 October 2010

Load-model LM1

Dissemination of information for training - Vienna, 4-6 October 2010

12

Statistical distribution of characteristics of vehicle

Dissemination of information for training – Vienna, 4-6 October 2010

Modelling of vehicles and surfaces

Dissemination of information for training – Vienna, 4-6 October 2010

Modelling of bridges

Load-model and simulations

Dissemination of information for training – Vienna, 4-6 October 2010

Dynamic effects

Dissemination of information for training - Vienna, 4-6 October 2010

Reference bridges for reliability analysis

Dissemination of information for training – Vienna, 4-6 October 2010

Definition of target β -value

Dissemination of information for training - Vienna, 4-6 October 2010

Definition of γ_Q -value

Dissemination of information for training – Vienna, 4-6 October 2010

γ_Q -values from LM1

Effect of modification: $a_{Q1}q_{1K} = 9 \rightarrow 8 \text{ kN/m}^2$ Effect of modification: $a_{Q2}q_{2K} = 2,5 \rightarrow 5 \text{ kN/m}^2$

Dissemination of information for training - Vienna, 4-6 October 2010

Forecast of freight-volume

Development of permits for heavy vehicles

Dissemination of information for training - Vienna, 4-6 October 2010

Results of WIM-measurements in NL

Dissemination of information for training - Vienna, 4-6 October 2010

Fatigue load model specified in EN 1991

Number of expected trucks per year for a single lane

	Traffic Category	Number of heavy vehicles N
1:	2-Lane Highways with a high rate of heavy vehicles	2 • 10 ⁶ / a
2:	Highways and roads with a medium rate of heavy vehicles	0,5 • 10 ⁶ / a
3:	Main roads with a low rate of heavy vehicles	0,125 • 10 ⁶ / a
4:	Country roads with a low rate of heavy vehicles	0,05 • 10 ⁶ / a

Fatigue loading model FLM 3

Dissemination of information for training - Vienna, 4-6 October 2010

Assessment method for FLM 3

equivalent constant amplitude stress ranges assessment with **Concept for fatigue**

Dissemination of information for training – Vienna, 4-6 October 2010

Fatigue details – welded attachments and stiffeners

Detail		New Evaluation for prEN 1993-1-9 (2002)						
Category	Constructional detail		Detail	# of data	m		Δσα	
caregory		1	Dotan	" of data	variable	constant	m=var.	m=const.
80	L≤ 50mm			17	3,26	3	89,10	87,00
71	50 <l≤ 80mm<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></l≤>							
63	80 <l≤ 100mm<="" td=""><td></td><td></td><td>109</td><td>2,45</td><td>3</td><td>67,04</td><td>77,14</td></l≤>			109	2,45	3	67,04	77,14
56	L>100mm		1	62 18 15 17 6 8 12 4 9	3,24 3,32 3,05 3,27 3,81 3,48 3,54 4,59 2,43	3 3 3 3 3 3 3 3 3 3	58,06 76,08 94,57 79,37 80,59 84,22 69,12 78,39 53,43	55,96 72,31 94,73 76,49 59,53 76,73 60,14 50,12 74,94
71	L>100mm α<45°		2	53 27 39	2,92 2,99 2,73	3 3 3	69,24 58,97 78,95	70,58 59,85 83,41
80	r>150mm	3 reinforced	3	6 4 4 10	3,06 3,29 3,31 3,12	3 3 3 3	100,94 97,27 36,16 59,00	105,20 96,41 62,94 63,76
90	$\frac{r}{L} \ge \frac{1}{3}$ or r>150mm	Providence and a second						
71	$\frac{1}{6} \le \frac{r}{L} \le \frac{1}{3}$		4	13	1,26	3	18,43	72,84
50	$\frac{r}{L} < \frac{1}{6}$	V r						

EN 1993-1-9 - Fatigue resistance

Dissemination of information for training - Vienna, 4-6 October 2010

Required moment of inertia from ULS and fatigue design for detail category 71

Span limits for fatigue design

29

Joint for hanger

Alternatives for joints of hangers: optimised joint:

- continuously increasing stiffness (K90)
 - \Rightarrow low curvature from bending
- end of hanger with hole and inclined cut
 - \Rightarrow low stresses at end of hanger for K50
- ratio of inclined cut and connecting plate
 - ⇒ avoiding of stress peak at end of hanger

Recommendations for durable detailing

30

Dissemination of information for training – Vienna, 4-6 October 2010

Hanger connection for arch bridges

Substitution of fatigue checks for critical details

Dissemination of information for training - Vienna, 4-6 October 2010

32

Standard orthotropic steel deck with continuous stringers with cope holes in the web of the cross beam

Substitution of fatigue checks by structural detailing rules

Dissemination of information for training - Vienna, 4-6 October 2010

Structural detailing for deck plate

connection of deck plate to troughs

design life	load model 4
without layer	< 10 years
asphaltic	
sealing	30 - 50 years
PmB 45	
thermosetting	
resin	70 - 90 years
PmB 25	

Recommended details of orthotropic deck

33

Dissemination of information for training - Vienna, 4-6 October 2010

Structural detailing for cross beams

$$t_{Ltrough} = 6 \text{ mm}$$

 $t_{web} = 10 - 16 \text{ mm}; \text{ verification of net web section required}$
 $h_{crossbeam} \leftrightarrow 700 \text{ mm}$

Dissemination of information for training - Vienna, 4-6 October 2010

Potential positions of cracks in the asphalt layer

Durability of asphalt layer

Dissemination of information for training - Vienna, 4-6 October 2010

Steel bridges – serviceability limit state

- 1 heavy traffic lane
- 2 web of main girder or longitudinal girder
2. LOAD ASSUMPTIONS FOR STEEL BRIDGES

Plate buckling

Verification to web breathing

$$\sqrt{\left(\frac{\sigma_{x,Ed,ser}}{k_{\sigma} \sigma_{E}}\right)^{2} + \left(1,1\frac{\tau_{Ed,ser}}{k_{\tau} \sigma_{E}}\right)^{2}} \le 1,15$$

Definition of a plated element

37

2. LOAD ASSUMPTIONS FOR STEEL BRIDGES

Dissemination of information for training - Vienna, 4-6 October 2010

Subdivision of a moment-distribution to elements with standard shape

Dissemination of information for training - Vienna, 4-6 October 2010

β -factor for shear lag

Dissemination of information for training - Vienna, 4-6 October 2010

Differences in modelling

Dissemination of information for training - Vienna, 4-6 October 2010

Differences in modelling

Dissemination of information for training - Vienna, 4-6 October 2010

Differences in modelling

Design principles for individual bearings

- Permission of movements minimizing the reaction forces
- No tensile forces
- No significant redistribution of forces to other bearings from accomodation to installation tolerances
- Specification of installation conditions with details of construction sequence and time variable conditions
- Measure to avoid unforeseen deformation of the bearings (non uniform contact)

Construction documents

- Bearing plan (drawing of the bearing system)
- Bearing installation drawing (structural details)
- Bearing schedule (characteristic values from each action, design values from combination of action)

Dissemination of information for training – Vienna, 4-6 October 2010

	sliding	rolling	deforming
displace- ment			
rotation			

Functional principles of bearings

47

Dissemination of information for training - Vienna, 4-6 October 2010

This bearing list gives the characteristic values of bearing forces and movements for the final stage of the bridge. Where bearings are installed during construction of Project: the bridge and where the forces and movements in this stage exceed the values in the final stage the relevant forces and movements under construction should be given in a separate bearing list. $M_{\mathbf{x}}$ Vx. Bearing forces and movements vx Øx N [KN] V_{*}[kN] V_v[kNi M_x [kNm] v_x[mm] vytmmi φ_x [mrad] φy (mrad) **Bearing No.:** v min Φу min max min min max min max min max max min max max min max Self weight 1.1 Doed load 1.2 Permanent actions Prestressing by tendons 1.3 (G and P) 1.4 Creep of concrete Shrinkage of concrete 1.5 Traffic loads 2.1 Special vehicles 2.2 Centritugal forces 2.3 2.4 Nosing forces Braking and acceleration forces 2,5 2.6 Foot path loading Wind on structure without traffic 2.7 variable actions Wind on structure with treffic 2.8 (Q) 2.9 Uniform temperature Vertical temperature difference 2.10 2.11 Horizontal temperature difference 2.12 Soil sottlements Bearing resistance /friction 2,13 2.14 replacement of bearings Pressure and suction from traffic 2,15 Non collapse rupture(ULS) 3.1 seismic Minimisation of damage (SLS) 3.2 derailment 4.1 impact 4.Z accidental actions (A) 4.3 n (12) 20 1.1.1 12 (22

48

. .

Dissemination of information for training – Vienna, 4-6 October 2010

Project						1			
Bearing	g No.:			· · · · ·					
	N Vy	This bearing list installed during or relevant forces a	gives the characte construction of the ind movements un	ristic values of be bridge and where der construction s	aring forces and in the forces and mishould be given in	movements for the lovements in this a separate bear	e final stage of the stage exceed the ing list.	e bridge, where b values in the fina	earings are I stage the
Vx /		Related d	esign values	of bearing fo	orces and m	ovements a	cc. to the co	mbination in	clause E.
للہ vy	νx φx	N	Vx	Vy	M×	Vx	vy	φx	φy
Фу		[kN]	[KN]	[kN]	[kNm]	[mm]	[mm]	[mrad]	(mrad)
	Design val	ues of bea	ring force	es and m	ovement	s at ultim	ate limit	states	- <u>¦</u>
		Bearing forc	es of the fun	damental co	mbination a	cc. to clause	+ E5		
1.1	max N _{Ed}						<u> </u>		
1.2	max M						ļ		
1.0	min V	· · · · · · · · · · · · · · · · · · ·							
1.5	max V								
1.6	min V _{v54}								
1,7	max M _{v Ed}								
1.8	min M _{x.Ed}								
L	B	earing moven	nents of the f	undamental	combination	i n acc., to clai	use E.5	<u>}</u>	
2.1	max v _{x,d}			[1	
2.2	min v _{x,d}								
2.3	max v _{y,d}								
2.4	min v _{y,d}								
2.5	max φ _{×,d}								
2.6	min _{Px,d}								
2.7	max φ _{y,d}								
28	ming					· · · · · · · · · · · · · · · · · · ·			

· · ·

Dissemination of information for training - Vienna, 4-6 October 2010

Actions for permanent and transient design situations

No.	Action	Eurocode
	Reference to temperature T ₀	DIN EN 1991-1-5:2004-07
1.1	Self-weight	DIN EN 1991-1-7:2007-02
1.2	Dead loads	DIN EN 1991-1-7:2007-02
1.3	Prestressing	DIN EN 1992-1:2005-10 and
		DIN EN 1994-2:2006-07
1.4	Creep concrete	DIN EN 1992-1:2005-10
1.5	Shrinkage of concrete	DIN EN 1992-1:2005-10
2.1	Traffic loads	DIN EN 1991-2:2004-05
2.2	Special vehicles	DIN EN 1991-2:2004-05
2.3	Centrifugal forces	DIN EN 1991-2:2004-05
2.4	Nosing forces	DIN EN 1991-2:2004-05
2.5	Brake and acceleration forces	DIN EN 1991-2:2004-05
2.6	Footpath loading	DIN EN 1991-2:2004-05
2.7	Wind on structure without traffic	DIN EN 1991-4:2005-07
2.8	Wind on structure with traffic	DIN EN 1991-4:2005-07
2.9	Range uniform temperature	DIN EN 1991-1-5:2004-07, 6.1.3 and 6.1.5
2.10	Vertical temperature difference	DIN EN 1991-1-5:2004-07, 6.1.4 and 6.1.5
2.11	Horizontal temperature difference	DIN EN 1991-1-5:2004-07, 6.1.4 and 6.2
2.12	Soil Settlements	DIN EN 1997-1:2009-09
2.13	Bearing resistance/friction forces	DIN EN 1337, Part 2 to 8
2.14	Replacement of bearing	DIN EN 1991-2:2004-05
2.15	Pressure and suction from traffic	DIN EN 1991-2:2004-05
2.16	Wind during erection	DIN EN 1991-4:2005-07 and
		DIN EN 1991-1-6:2005-09
2.17	Construction loads	DIN EN 1991-1-6:2005-09
2.18	Accidental actions	DIN EN 1991-1-7:2007-02

 For transient design situations reduction of variable actions due to limited duration → EN 1991-2, 4.5.3. For steel bridges also actions from installation of hot asphalt according to technical project specifications.

Dissemination of information for training – Vienna, 4-6 October 2010

51

Actions in accidental design situations

- Specifications according to EN 1991-2
- Limitation of bridge movements by structural measures, e.g. stop devices at abutments

Actions in seismic design situations

Specifications according to EN 1998-1 and EN 1998-2

Dissemination of information for training – Vienna, 4-6 October 2010

Determination of design values of movements and bearing forces Principles

- Combination according to EN 1990, 6.5.3.2 (2) with partial factors according to EN 1990, A.2 and particular rules for climatic temperature effects
- Movements due to creep and shrinkage by multiplying mean values in EN 1992-2 and EN 1994-2 by a factor of 1.35
- Verification of static equilibrium (uplift of bearings) and anchoring devices by applying \pm 0.05 $G_{\rm K}$ spanwise
- Consideration of deformations of foundation, piers and bearings in the modelling of the structure, see EN 1991-2, 6.5.4.2
- Use of 2nd order theory for accounting for deformations of piers after installation of bearings if required by EN 1992-1-1, 5.8.2 (6).
 For calculation of pier deformations k_y = 0,5 may be applied to geometric member imperfections in EN 1992-1-1, 5.2.

Dissemination of information for training - Vienna, 4-6 October 2010

Determination of design values of movements and bearing forces

Climatic temperature effects

Maximum and minimum constant temperature component:

$$T_{ed, min} = T_0 - \gamma_F \cdot \Delta T_{N,con} - \Delta T_0$$

$$T_{ed, max} = T_0 + \gamma_F \cdot \Delta T_{N,exp} + \Delta T_0$$
additional safety element
charact. Values EN 1991-1-5, 6.1.3.3
partial factor $\gamma_F = 1,35$
reference temperature during installation of the bearings, e.g. +10°C

Table E.4: Recommended values for ΔT_0

Cara	Tratellation of bearing	ΔT ₀ [°C]						
Case	Instanation of bearing	steel bridges	composite bridges	concrete bridges				
1	Installation with measured Temperature and with correction Resetting with bridge set at ${\rm T}_0$	0	0	0				
2	Installation with estimated ${\rm T_0}$ and without correction by resetting with bridge set ${\rm T_0}$	10	10	10				
3	Installation with estimated temperature T_0 and without correction by resetting and also one ore more changes in position of the fixed bearing	25	20	20				

 $\Delta T_d = T_{ed,max} - \Delta T_{ed,min}$ For non-linear behaviour stepwise determination $\Delta T_d = \gamma_F \cdot \Delta T_N$ 53

Dissemination of information for training – Vienna, 4-6 October 2010

Reaction forces at fixed points resulting form resistance of the bearing system For sliding bearings:

For elastomeric bearings

Safety assessment based on fracture mechanics

Toughness-temperature - Load-strain-diagram

Design situations in the upper-shelf region B and the transition region A of the toughness-temperature diagram

Dissemination of information for training - Vienna, 4-6 October 2010

Choice of material to EN 1993-1-10

		Cha	irpy	Reference temperature T _{Ed} [°C]																				
Steel	Sub-	ene C\	rgy /N	10	0	-10	-20	-30	-40	-50	10	0	-10	-20	-30	-40	-50	10	0	-10	-20	-30	-40	-50
grade	grade	at T	J _{min}	$\sigma_{Ed} = 0,75 f_y(t)$					σ_{Ed} = 0,50 f _y (t)						σ_{Ed} = 0,25 f _y (t)									
S235	.IR	20	27	60	50	40	35	30	25	20	90	75	65	55	45	40	35	135	115	100	85	75	65	60
0200	JO	0	27	90	75	60	50	40	35	30	125	105	90	75	65	55	45	175	155	135	115	100	85	75
	J2	-20	27	125	105	90	75	60	50	40	170	145	125	105	90	75	65	200	200	175	155	135	115	100
S275	JR	20	27	55	45	35	30	25	20	15	80	70	55	50	40	35	30	125	110	95	80	70	60	55
	JO	0	27	75	65	55	45	35	30	25	115	95	80	70	55	50	40	165	145	125	110	95	80	70
	J2	-20	27	110	95	75	65	55	45	35	155	130	115	95	80	70	55	200	190	165	145	125	110	95
	M.N	-20	40	135	110	95	75	65	55	45	180	155	130	115	95	80	70	200	200	190	165	145	125	110
	ML,NL	-50	27	185	160	135	110	95	75	65	200	200	180	155	130	115	95	230	200	200	200	190	165	145
S355	JR	20	27	40	35	25	20	15	15	10	65	55	45	40	30	25	25	110	95	80	70	60	55	45
	JO	0	27	60	50	40	35	25	20	15	95	80	65	55	45	40	30	150	130	110	95	80	70	60
	J2	-20	27	90	75	60	50	40	35	25	135	110	95	80	65	55	45	200	175	150	130	110	95	80
	K2,M,N	-20	40	110	90	75	60	50	40	35	155	135	110	95	80	65	55	200	200	175	150	130	110	95
	ML,NL	-50	27	155	130	110	90	75	60	50	200	180	155	135	110	95	80	210	200	200	200	175	150	130
S420	M,N	-20	40	95	80	65	55	45	35	30	140	120	100	85	70	60	50	200	185	160	140	120	100	85
	ML,NL	-50	27	135	115	95	80	65	55	45	190	165	140	120	100	85	70	200	200	200	185	160	140	120
S460	Q	-20	30	70	60	50	40	30	25	20	110	95	75	65	55	45	35	175	155	130	115	95	80	70
	M,N	-20	40	90	70	60	50	40	30	25	130	110	95	75	65	55	45	200	175	155	130	115	95	80
	QL	-40	30	105	90	70	60	50	40	30	155	130	110	95	75	65	55	200	200	175	155	130	115	95
	ML,NL	-50	27	125	105	90	70	60	50	40	180	155	130	110	95	75	65	200	200	200	175	155	130	115
	QL1	-60	30	150	125	105	90	70	60	50	200	180	155	130	110	95	75	215	200	200	200	175	155	130
S690	Q	0	40	40	30	25	20	15	10	10	65	55	45	35	30	20	20	120	100	85	75	60	50	45
	Q	-20	30	50	40	30	25	20	15	10	80	65	55	45	35	30	20	140	120	100	85	75	60	50
	QL	-20	40	60	50	40	30	25	20	15	95	80	65	55	45	35	30	165	140	120	100	85	75	60
	QL	-40	30	75	60	50	40	30	25	20	115	95	80	65	55	45	35	190	165	140	120	100	85	75
	QL1	-40	40	90	75	60	50	40	30	25	135	115	95	80	65	55	45	200	190	165	140	120	100	85
	QL1	-60	30	110	90	75	60	50	40	30	160	135	115	95	80	65	55	200	200	190	165	140	120	100

National quality tests

AUBI-test according to SEP 1390 (1996)

trend analysis for the AUBI correlation

Dissemination of information for training – Vienna, 4-6 October 2010

Example	Nominal plate thickness	Additional requirement
	t ≤ 30 mm	T _{27J} = -20 °C acc. to EN 10025
1	30 < t ≤ 80 mm	Fine grained steel acc. to EN 10025, e.g. S355N/M
	t > 80 mm	Fine grained steel acc. to EN 10025, e.g. S355NL/ML

Choice of material given in Table 3.1 of EN 1993-2

61

Example: Thick plates for the composite "Elbebridge Vockerode" (EN 1993-1-10)

Construction at supports

62

Bridge St. Kilian

Dissemination of information for training – Vienna, 4-6 October 2010

Bridge St. Kilian

Cast node for the bridge St. Kilian

Cast node for the bridge St. Kilian

Prepared under the JRC – ECCS cooperation agreement for the evolution of Eurocode 3 (programme of CEN / TC 250)

Editors: M. Géradin, A. Pinto and S. Dimova

First Edition, September 2008

EUR 23510 EN - 2008

67

6. DESIGN OF BRIDGE-ELEMENTS 6.1 STABILITY RULES

Dissemination of information for training - Vienna, 4-6 October 2010

Common design rules for column, lateral torsional, plate and shell buckling

69

Column buckling

Dissemination of information for training – Vienna, 4-6 October 2010

Buckling curve Buckling S 235 Cross section Limits about S 275 S 460 axis S 355 S 420 z tr ao y - yа $t_f \leq 40 \ \mathrm{mm}$ h/b > 1,2b z - z a_0 Rolled sections y – y ь а $40 \text{ mm} < t_f \le 100$ z - zс а h У у – у b а $t_f \leq 100 \text{ mm}$ $h/b \le 1,2$ z - zс а d y – y с $t_f > 100 \text{ mm}$ d z - zс b ь Ъ <u></u>]______¥t, y – y = ⇒t, $t_f \le 40 \text{ mm}$ z - zс с Welded I-sections y – y с с $t_f > 40 \text{ mm}$ z - zd d hot finished any а a_0 Hollow sections cold formed с any с t, generally (except as Ъ b Welded box sections any below) h У thick welds: a > 0,5tr 11 $b/t_f \leq 30$ с any с z b . h/t_w <30 T-and sections any с с U., solid L-sections ь Ъ any

Selection of buckling curves

Dissemination of information for training – Vienna, 4-6 October 2010

Test evaluation – weak axis buckling

72
Dissemination of information for training - Vienna, 4-6 October 2010

Test evaluation – weak axis buckling

Dissemination of information for training – Vienna, 4-6 October 2010

 γ_{M} -values according to EN 1990 – Annex D

Dissemination of information for training – Vienna, 4-6 October 2010	75
European buckling curve	2nd order theory with imperfection
$E_d \stackrel{!}{=} R_k$	$E_d \stackrel{\prime}{=} R_d$
$\overline{\lambda} = \sqrt{rac{N_{pl}}{N_{crit}}}$	$\overline{\lambda}_{d} = \sqrt{\frac{N_{pl,d}}{N_{crit}}}$
$\chi = (lpha, \overline{\lambda})$	$\chi_{d} = (\alpha, \overline{\lambda_{d}})$
$R_k = \chi, N_{pl}$	
$R_d = rac{R_k}{\gamma_M}$	$R_{d} = \frac{\chi_{d} \cdot N_{pl}}{\gamma_{M}}$
	Consequences:
	Option 1: $\overline{E}_d = \gamma_M \cdot E_d$
	Option 2: $\overline{N}_{crit,d} = \frac{N_{crit}}{\gamma_M}$
	Option 3: $\gamma_M = 1,0$
	$1 - \chi \overline{\lambda}^2$
	Option 4: $e_d = e_0 \frac{\gamma_M}{1 - \chi \overline{\lambda}^2}$
	Option 5: $\gamma_M^* = \frac{\chi_d}{\chi} \cdot \gamma_M$

Equivalence of buckling curves and 2nd order theory

Dissemination of information for training - Vienna, 4-6 October 2010

$\gamma_{\rm M}$ -values for 2nd order analysis

λ	ϕ	χ	$\lambda_{_d}$	$\phi_{_d}$	χ_{d}	$g = \frac{\chi_d}{\chi}$
0,5	0,685	0,870	0,477	0,661	0,895	1,03
1,0	1,136	0,597	0,953	1,082	0,627	1,05
1,5	1,846	0,342	1,43	1,734	0,369	1,08
2,0	2,806	0,209	1,906	2,605	0,228	1,09
3,0	5,476	0,10	2,859	5,039	0,109	1,09

Imperfections for members with various boundary conditions

$$\eta_{\text{ini}} = e_{\text{od}} \sin \frac{\pi x}{\ell}$$
$$M_{\text{e}} = e_{\text{od}} N_{\text{Ed}} \frac{1}{1 - \frac{N_{\text{Ed}}}{N_{\text{crit}}}} \sin \frac{\pi x}{\ell}$$

$$-e_{0d}\frac{1}{1-\frac{N_{Ed}}{EI\alpha_{crit}^2}}\overline{\eta_{crit,max}''}$$

Use of buckling mode as imperfection

Example for a column on elastic supports

Equivalence of flexural and lateral torsional buckling

Comparison of LTB-curves

Dissemination of information for training - Vienna, 4-6 October 2010

Procedure for lateral torsional buckling assessments using the buckling curves:

1. Input parameters:

$$\alpha_{crit} = \frac{R_{crit}}{E_d}$$
$$\overline{\lambda} = \sqrt{\frac{\alpha_{ult,k}}{\alpha_{critt}}}$$

 $\alpha_{ult k} = \frac{R_k}{R_k}$

2. Modification of imperfection factor:

$$\alpha^* = \frac{\alpha_{crit}^*}{\alpha_{crit}} \cdot \alpha$$

where α_{crit}^{*} is determined without effect of $G \cdot I_{D}$

3. Use of flexural buckling curve:

$$\phi = 0.5 \left[I + \alpha^* (\lambda - 0.2) + \overline{\lambda}^2 \right]$$
$$\chi = \frac{I}{\phi - \sqrt{\phi^2 - \overline{\lambda}^2}}$$

4. Assessment for design point x_d

$$\frac{\chi \alpha_{ult,k}}{\gamma_M} \ge 1$$

Comparison of laterial torsional buckling curves

Determination of design point x_d

Example: Portal frame

Dissemination of information for training - Vienna, 4-6 October 2010

Example: Modal out-of-plane deformation α_{crit} =1.85

1. Calculation with extreme value $\alpha_{\text{ult},\text{k},\text{min}}$	2. Calculation design point x _d
$\alpha_{ult,k} = 1.55$	$\alpha_{ult,k} = 1.94$
$\alpha_{crit} = 1.85$	
$\alpha^*_{crit} = 1.84$	
$\overline{\lambda} = \sqrt{\frac{1.55}{1.85}} = 0.915$	$\overline{\lambda} = \sqrt{\frac{1.94}{1.85}} = 1.05$
$\alpha^* = \frac{\alpha_{crit}^*}{\alpha_{crit}} \alpha = \frac{1.54}{1.85} \cdot 0.49 = 0.408$	
$\phi_{LT} = 0.5 \left[1 + \alpha^* \left(\overline{\lambda} - 0.2\right) + \overline{\lambda}^2\right] = 1.064$	$\phi_{LT} = 1.225$
$\chi = \frac{1}{\phi + \phi^2 - \lambda^2} = 0.622 > 0.50$	$\chi = 0.59 > 0.50$
contact splice sufficient	contact splice sufficient
$\frac{\chi \cdot \alpha_{ult}}{\gamma_M} = \frac{0.622 \cdot 1,55}{1.10} = 0.88 < 1.00$	$\frac{\chi \cdot \alpha_{ult,k}}{\gamma_M} = \frac{0.59 \cdot 1.94}{1.10} = 1.04 > 1.00$

Check of out-of-plane stability

Dissemination of information for training – Vienna, 4-6 October 2010

Example: Composite bridge

Example: Cross-section of the composite bridge

Dissemination of information for training - Vienna, 4-6 October 2010

Example: Moment distribution critical for out-of-plane stability of main girders

Cross-section x (m)

Dissemination of information for training – Vienna, 4-6 October 2010

Example: cross-beam at supports

Dissemination of information for training - Vienna, 4-6 October 2010

Example: intermediate cross-beam all 7,50 m

Dissemination of information for training - Vienna, 4-6 October 2010

Example: α_{crit} -values and modal out-of-plane deformations

Dissemination of information for training - Vienna, 4-6 October 2010

Example: Input for $\alpha_{ult,k}$ -values

Checks for lateral-torsional buckling

• • •
$_{t,k} = \frac{295}{250} = 1,184$
$u_{it} = 17,489$ = $\sqrt{\frac{1,184}{17,489}} = 0,26$
$= \frac{15,20}{17,49} \cdot 0,76 = 0,66$
$= 0,554$ $= 0,96$ $\cdot \alpha_{ult,k} = \frac{0,96 \cdot 1,184}{0,96 \cdot 1,184} = 1.03 > 1.00$

Column buckling and plate buckling

Column-like behaviour:

Plate-like behaviour:

Example: Torsional buckling according to EN 1993-1-1

Dissemination of information for training - Vienna, 4-6 October 2010

Column buckling curve and plate buckling curve

Dissemination of information for training - Vienna, 4-6 October 2010

Stress- and strain-controlled plate buckling

Dissemination of information for training - Vienna, 4-6 October 2010

Modification of imperfection factor

Interaction between column buckling χ and plate buckling $\chi^* = \rho$

"Hybrid cross-section" due to different stress-limits

"Yielding effect" in bending

Dissemination of information for training – Vienna, 4-6 October 2010

Extension of method 2

Dissemination of information for training - Vienna, 4-6 October 2010

Methods in bridge design

Method 1

Use of effective cross-section

Method 2

Use of stress-limit

Dissemination of information for training - Vienna, 4-6 October 2010

Plate-buckling coefficients

Method 1: Effective cross-section for σ_x

111

Method 1: Resistance to shear τ

reduction factor χ_w		
$\overline{\lambda}_w < 0.83$	1.0	1.0
$0,83 \le \overline{\lambda}_w < 1,08$	$0,83 / \overline{\lambda}_w$	$0,83/\overline{\lambda}_w$
$\overline{\lambda}_{w} \ge 1,08$	$1,37(0,7+\overline{\lambda}_w)$	$0,83/\overline{\lambda}_w$

$$V_{bw,Rd} = \chi_w \cdot h_w \cdot t_w \frac{f_{yd}}{\sqrt{3}}$$
$$\eta_3 = \frac{V_{Ed}}{V_{bw,Rd}}$$

German National Annex

Method 1 only applicable to girders without longitudinal stiffners

• The use of Method 1 should be supplemented by checking global buckling with Method 2 for characteristic load level E_k and $\gamma_M = 1,10$

Example: cross-section check for a composite bridge

Panel plate buckling check with method 2

Verification of stiffened web plate for launching, Bridge Oehde

Dissemination of information for training - Vienna, 4-6 October 2010

Stiffened web panel and loading

Use of method 2 for stress-assessment

Dissemination of information for training – Vienna, 4-6 October 2010

Prepared under the JRC – ECCS cooperation agreement for the evolution of Eurocode 3 (programme of CEN / TC 250)

First Edition, October 2007

EUR 22898 EN - 2007

120

6. DESIGN OF BRIDGE-ELEMENTS 6.2 FATIGUE RULES

Dissemination of information for training - Vienna, 4-6 October 2010

Standardized Wöhler- curve for welded details

Damage equivalence

$$D = \sum D_{i} = \sum \frac{n_{Ei}}{N_{Ri}}$$

$$= \sum \frac{\Delta \sigma_{Ei}^{3} n_{Ei}}{\Delta \sigma_{C}^{3} \cdot 2 \cdot 10^{-6}}$$
Damage equivalence:
$$\Delta \sigma_{e}^{3} \cdot \sum n_{Ei} = \sum \Delta \sigma_{Ei}^{3} \cdot n_{Ei}$$

$$\Delta \sigma_{e} = \left[\frac{\sum \Delta \sigma_{Ei}^{3} \cdot n_{Ei}}{\sum n_{Ei}}\right]^{\frac{1}{3}}$$

$$\Delta \sigma_{e} = \left[\frac{\sum \Delta \sigma_{Ei}^{3} \cdot n_{Ei}}{\sum n_{Ei}}\right]^{\frac{1}{3}}$$

Dissemination of information for training - Vienna, 4-6 October 2010

Reservoir-counting method

123

Various design situations

Dissemination of information for training - Vienna, 4-6 October 2010

Representations of fatigue spectrum

Dissemination of information for training - Vienna, 4-6 October 2010

Distribution of weights of heavy vehicles

126

Load-models for fatigue checks of road bridges

Safety-plan for damage tolerant design

$$D = \sum \frac{\left(\gamma_{Ff} \Delta \sigma_{Ei}\right)^3 n_{Ei}}{\left(\frac{\Delta \sigma_c}{\gamma_{Mf}}\right)^3 \cdot 2 \cdot 10^6} + \sum \frac{\left(\gamma_{Ff} \Delta \sigma_{Ej}\right)^5 n_{Ej}}{\left(\frac{\Delta \sigma_D}{\gamma_{Mf}}\right)^3 \cdot 5 \cdot 10^6} \le \frac{1}{4}$$

$$\left(\frac{1}{\gamma_{Ff} \cdot \gamma_{Mf}}\right)^5 \frac{1}{1+n} = \frac{1}{4} \qquad n = \left(\frac{4}{\left(\gamma_{Ff} \cdot \gamma_{Mf}\right)^5}\right) - 1$$

$$\gamma_{Ff} \cdot \gamma_{Mf} = 1.0 \qquad \longrightarrow \qquad n = 4 - 1 = 3$$

$$\gamma_{Ff} \cdot \gamma_{Mf} = 1.15 \qquad \longrightarrow \qquad n = \frac{4}{1.15^5} - 1 \approx 1$$

$$\gamma_{Ff} \cdot \gamma_{Mf} = 1.35 \qquad \longrightarrow \qquad n = \frac{4}{1.35^5} - 1 \approx 0$$

Control of actions $\gamma_N = 2 \rightarrow \gamma_{Mf} = \sqrt[5]{2} = 1,15$ No control of actions $\gamma_N = 4,5 \rightarrow \gamma_{Mf} = \sqrt[5]{4,50} = 1,35$ 129

 λ_1 value from simulations with Auxerre traffic

131

Example: Fatigue assessment for a composite bridge

6. DESIGN OF BRIDGE-ELEMENTS 6.3 ROPE STRUCTURES

Dissemination of information for training - Vienna, 4-6 October 2010

Rope-structures - Stayed cable bridges

Definition

- Any prestress is generated by preloading
- Preloading is a process to impose
 - forces or
 - deformations
- The effects of preloading may be
 - variations of stresses (prestress)
 - variations of deformations
 - other variations of permanent stage

134

135

Examples for preloading processes

1c) Prestressing by external tendons

1d) Prestressing of joints subjected to tension or friction

136

Examples for preloading processes

2) Prestressing by propping

4) Prestressing by imposed deformation

3) Prestressing by sequence of casting concrete

137

Examples for preloading processes

5b) Prestressing of arches by string-elements

5c) Prestressing of guyed masts

5d) Prestressing of cable stayed structures

- It is possible to define the preloading or prestressing process by all necessary steps including controls
- It is not possible to define "prestress" as an effect of prestressing or preloading in a general way, that covers all cases

Example for the applicability of "prestress"

stress before prestresses: $\sigma_{q0,\Delta l=0}$

stress immediately after prestressing: $\sigma_{q0,\Delta l}$

prestress:
$$\sigma_{q0,\Delta l=0,\Delta l}=\sigma_{q0,\Delta l}-\sigma_{q0,\Delta l=0}$$

Dissemination of information for training – Vienna, 4-6 October 2010

$$\Delta l_s = \frac{l_s}{EF} (S - S_0) - \frac{l_s^3}{24} \left(\frac{q^2}{S^2} - \frac{q_0^2}{S_0^2} \right) + \alpha_t (t - t_0) l_s$$

strain catanery temperature

"P" in EN 1990

- a) preloading or prestressing process leading to a structural shape or behaviour as required
- b) prestress in specific cases where defined

Dissemination of information for training - Vienna, 4-6 October 2010

142

Treatment of preloading and prestressing processes in the construction phase

Target:attainment of the required structural formand distribution of effects of (G+P)

Conclusion: calculation with characteristic values, linear material law: stress limitations and prestressing of cables.

Dissemination of information for training - Vienna, 4-6 October 2010

143

Treatment of preloading and prestressing processes in the construction phase

Dissemination of information for training - Vienna, 4-6 October 2010

Treatment of preloading and prestressing processes in the service phase

Target: ULS verification on the basis of:

- permanent actions $\gamma_{G}(G+P)$
- permanent from resulting from (G+P)
- imperfections of the form
- variable actions $\gamma_Q \{Q_{K1} + \psi_0 Q_{Q2}\}$

Conclusion: Calculation with the permanent form associated with the effect from $\gamma_G(G+P)$
6.3 ROPE STRUCTURES

Dissemination of information for training - Vienna, 4-6 October 2010

145

Treatment of preloading and prestressing processes in the service phase

6.3 ROPE STRUCTURES

Dissemination of information for training - Vienna, 4-6 October 2010

Treatment at counterflexure points

Treatment at counterflexure points, or where the action effects from (G+P) are limited (e.g. by decompression):

 $\Delta G = \alpha G$, where $0.05 \le \alpha \le 0.10$

applied to influence surfaces.

6.3 ROPE STRUCTURES

Dissemination of information for training - Vienna, 4-6 October 2010

7. ASSESSMENT OF EXISTING STEEL BRIDGES

