

Dissemination of information for training - Brussels, 2-3 April 2009

EN 1992-2

EUROCODE 2 – Design of concrete structures Concrete bridges: design and detailing rules

Approved by CEN on 25 April 2005 Published on October 2005

Supersedes ENV 1992-2:1996

Prof. Ing. Giuseppe Mancini Politecnico di Torino Dissemination of information for training – Vienna, 4-6 October 2010

- -EN 1992-2 contains principles and application rules for the design of bridges in addition to those stated in EN 1992-1-1
- -Scope: basis for design of bridges in plain/reinforced/prestressed concrete made with normal/light weight aggregates

Dissemination of information for training - Vienna, 4-6 October 2010

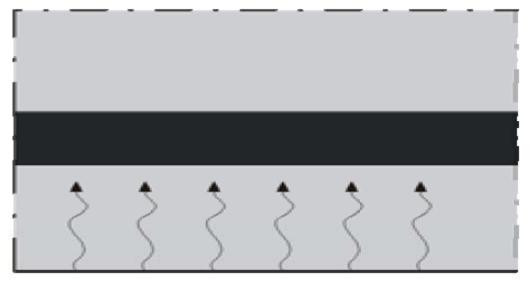
Section 3 \Rightarrow MATERIALS

- Recommended values for C_{min} and C_{max}
- α_{cc} coefficient for long term effects and unfavourable effects resulting from the way the load is applied

Recommended value: $0.85 \rightarrow$ high stress values during construction

- Recommended classes for reinforcement: "B" and "C"

(Ductility reduction with corrosion / Ductility for bending and shear mechanisms)


4

Dissemination of information for training – Vienna, 4-6 October 2010

Section 4 \Rightarrow Durability and cover to reinforcement

Dissemination of information for training – Vienna, 4-6 October 2010

Penetration of corrosion stimulating components in concrete

 CO_2 $CI^- O_2$ H_2O

Dissemination of information for training – Vienna, 4-6 October 2010

Deterioration of concrete

Corrosion of reinforcement by chloride penetration

Dissemination of information for training - Vienna, 4-6 October 2010

Avoiding corrosion of steel in concrete

Design criteria

- Aggressivity of environment
- Specified service life

Design measures

- Sufficient cover thickness
- Sufficiently low permeability of concrete (in combination with cover thickness)
- Avoiding harmfull cracks parallel to reinforcing bars



Dissemination of information for training - Vienna, 4-6 October 2010

Aggressivity of the environment

Main exposure classes:

- The exposure classes are defined in EN206-1. The main classes are:
- XO no risk of corrosion or attack
- XC risk of carbonation induced corrosion
- XD risk of chloride-induced corrosion (other than sea water)
- XS risk of chloride induced corrosion (sea water)
- XF risk of freeze thaw attack
- XA chemical attack

Dissemination of information for training - Vienna, 4-6 October 2010

Aggressivity of the environment

Further specification of main exposure classes in subclasses (I)

Class	Description of the environment	Informative examples where exposure classes
designation		may occur
1 No risk of	corrosion or attack	
	For concrete without reinforcement or	
X0	embedded metal: all exposures except where	
	there is freeze/thaw, abrasion or chemical	
	attack	
	For concrete with reinforcement or embedded	
	metal: very dry	Concrete inside buildings with very low air humidity
2 Corrosion	induced by carbonation	
XC1	Dry or permanently wet	Concrete inside buildings with low air humidity
		Concrete permanently submerged in water
XC2	Wet, rarely dry	Concrete surfaces subject to long-term water
		contact
		Many foundations
XC3	Moderate humidity	Concrete inside buildings with moderate or high air
		humidity
		External concrete sheltered from rain
XC4	Cyclic wet and dry	Concrete surfaces subject to water contact, not
		within exposure class XC2
3 Corrosion	induced by chlorides	
XD1	Moderate humidity	Concrete surfaces exposed to airborne chlorides
XD2	Wet, rarely dry	Swimming pools
		Concrete components exposed to industrial waters
		containing chlorides
XD3	Cyclic wet and dry	Parts of bridges exposed to spray containing
		chlorides
		Pavements
		Car park slabs

Dissemination of information for training - Vienna, 4-6 October 2010

Procedure to determine c_{min,dur}

EC-2 leaves the choice of $c_{min,dur}$ to the countries, but gives the following recommendation:

The value $c_{min,dur}$ depends on the "structural class", which has to be determined first. If the specified service life is 50 years, the structural class is defined as 4. The "structural class" can be modified in case of the following conditions:

- The service life is 100 years instead of 50 years
- The concrete strength is higher than necessary
- Slabs (position of reinforcement not affected by construction process
- Special quality control measures apply

The finally applying service class can be calculated with Table 4.3N

Dissemination of information for training - Vienna, 4-6 October 2010

Table for determining final Structural Class

Structural Class								
Criterion	Exposure Class according to Table 4.1							
Criterion	X0	XC1	XC2 / XC3	XC4	XD1	XD2 / XS1	XD3/XS2/XS3	
Design Working Life of	increase	increase	increase	increase	increase	increase	increase class	
100 years	class by 2	class by 2	class by 2	class by 2	class by 2	class by 2	by 2	
Strength Class ^{1) 2)}	\geq C30/37	\geq C30/37	≥ C35/45	≥ C40/50	≥ C40/50	≥ C40/50	≥ C45/55	
	reduce	reduce	reduce	reduce	reduce	reduce	reduce class by	
	class by 1	class by 1	class by 1	class by 1	class by 1	class by 1	1	
Member with slab	reduce	reduce	reduce	reduce	reduce	reduce	reduce class by	
geometry	class by 1	class by 1	class by 1	class by 1	class by 1	class by 1	1	
(position of reinforcement not affected by construction process)								
Special Quality	reduce	reduce	reduce	reduce	reduce	reduce	reduce class by	
Control of the concrete production ensured	class by 1	class by 1	class by 1	class by 1	class by 1	class by 1	1	

Dissemination of information for training – Vienna, 4-6 October 2010

Final determination of $c_{min,dur}$ (1)

The value c_{min,dur} is finally determined as a function of the structural class and the exposure class:

Table 4.4N: Values of minimum cover, c_{min,dur}, requirements with regard to durability for reinforcement steel in accordance with EN 10080.

Environmental Requirement for c _{min,dur} (mm)									
Structural	Exposure Class according to Table 4.1								
Class	X0	XC1	XC2 / XC3	XC4	XD1/XS1	XD2 / XS2	XD3 / XS3		
S1	10	10	10	15	20	25	30		
S2	10	10	15	20	25	30	35		
S3	10	10	20	25	30	35	40		
S4	10	15	25	30	35	40	45		
S5	15	20	30	35	40	45	50		
S6	20	25	35	40	45	50	55		

Dissemination of information for training – Vienna, 4-6 October 2010

Special considerations

In case of stainless steel the minimum cover may be reduced. The value of the reduction is left to the decision of the countries (0 if no further specification).

Dissemination of information for training – Vienna, 4-6 October 2010

- XC3 class recommended for surface protected by waterproofing

- When de-icing salt is used

Exposed concrete surfaces within (6 m) of the carriage way and supports under expansion joints: directly affected by de-icing salt

Recommended classes for surfaces directly affectd by de-icing salt: XD3 – XF2 – XF4, with covers given in tables 4.4N and 4.5N for XD classes Dissemination of information for training - Vienna, 4-6 October 2010

Section 5 \Rightarrow Structural analysis

- Linear elastic analysis with limited redistributions

Limitation of $\,\delta\,$ due to uncertaintes on size effect and bending-shear interaction

 $\delta \geq 0.85$

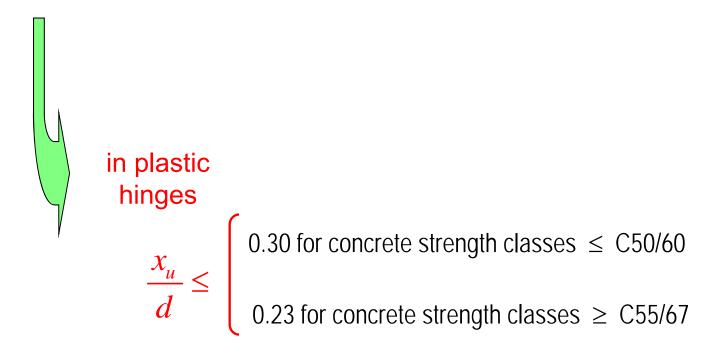
Dissemination of information for training - Vienna, 4-6 October 2010

16

- Plastic analysis

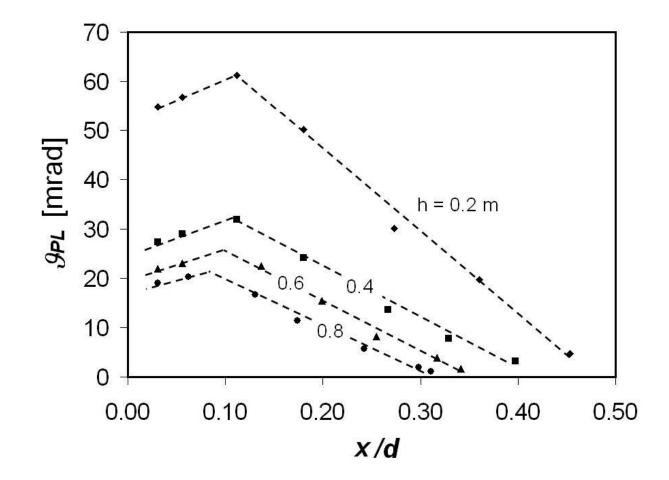
Restrictions due to uncertaintes on size effect and bending-shear interaction:

$$\frac{x_u}{d} \leq$$

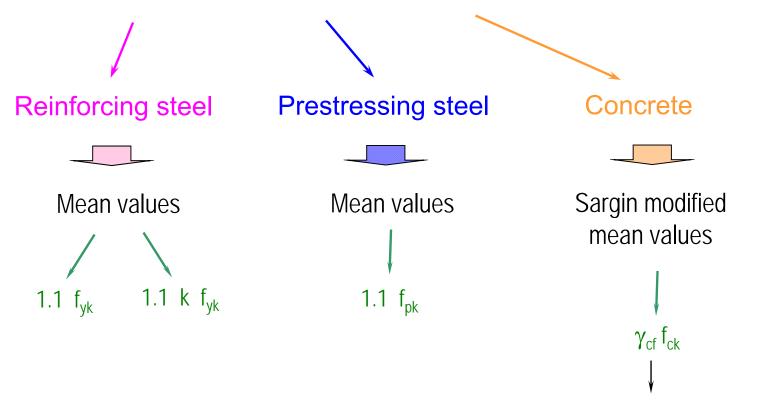

0.15 for concrete strength classes \leq C50/60 0.10 for concrete strength classes \geq C55/67

Dissemination of information for training – Vienna, 4-6 October 2010

- Rotation capacity



Restrictions due to uncertaintes on size effect and bending-shear interaction:


Dissemination of information for training – Vienna, 4-6 October 2010

Numerical rotation capacity

Dissemination of information for training – Vienna, 4-6 October 2010

- Nonlinear analysis \Rightarrow Safety format

 $\gamma_{cf} = 1.1 \gamma_s / \gamma_c$

Dissemination of information for training – Vienna, 4-6 October 2010

Design format

- Incremental analysis from SLS, so to reach $\gamma_G G_k + \gamma_Q Q$ in the same step
- Continuation of incremental procedure up to the peak strength of the structure, in corrispondance of ultimate load q_{ud}
- Evaluation of structural strength by use of a global safety factor γ₀

$$R\left(\frac{q_{ud}}{\gamma_0}\right)$$

Dissemination of information for training - Vienna, 4-6 October 2010

Verification of one of the following inequalities

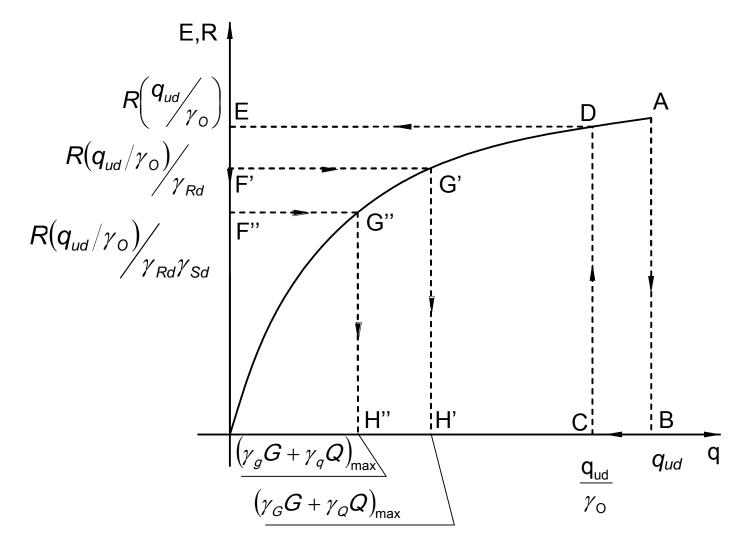
$$\gamma_{Rd} E\left(\gamma_G G + \gamma_Q Q\right) \le R\left(\frac{q_{ud}}{\gamma_O}\right)$$

$$E\left(\gamma_{G}G + \gamma_{Q}Q\right) \leq R\left(\frac{q_{ud}}{\gamma_{Rd} \cdot \gamma_{O}}\right)$$

(i.e.)
$$R\left(\frac{q_{ud}}{\gamma_{O'}}\right)$$

$$\gamma_{Rd}\gamma_{Sd}E\left(\gamma_{g}G+\gamma_{q}Q\right)\leq R\left(\frac{q_{ud}}{\gamma_{O}}\right)$$

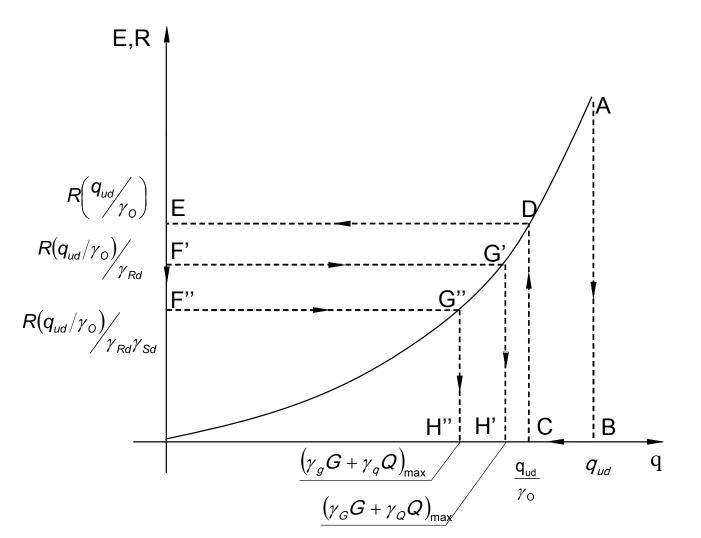
Dissemination of information for training – Vienna, 4-6 October 2010


With
$$\begin{cases} \gamma_{Rd} = 1.06 \text{ partial factor for model uncertainties (resistence side)} \\ \gamma_{Sd} = 1.15 \text{ partial factor for model uncertainties (actions side)} \\ \gamma_0 = 1.20 \text{ structural safety factor} \end{cases}$$

If $\gamma_{Rd} = 1.00$ then $\gamma_{0'} = 1.27$ is the structural safety factor

Dissemination of information for training – Vienna, 4-6 October 2010

Safety formatApplication for scalar combination of internal actions
and underproportional structural behaviour

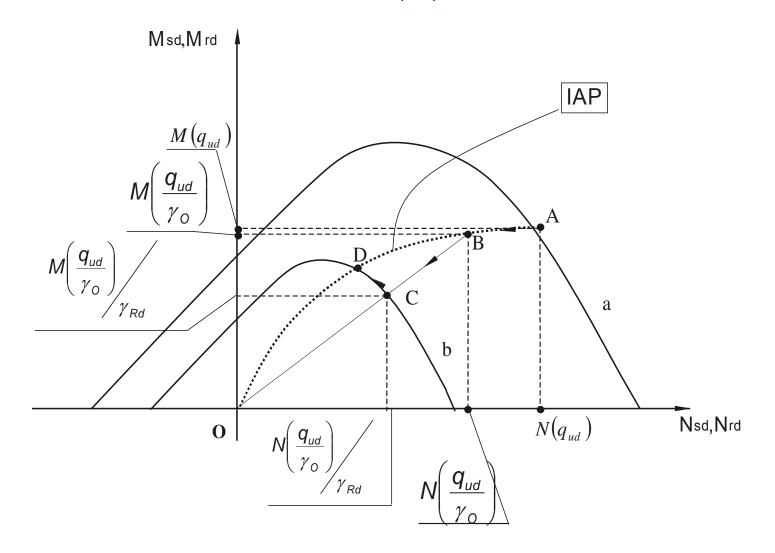


Dissemination of information for training – Vienna, 4-6 October 2010

Safety format

24

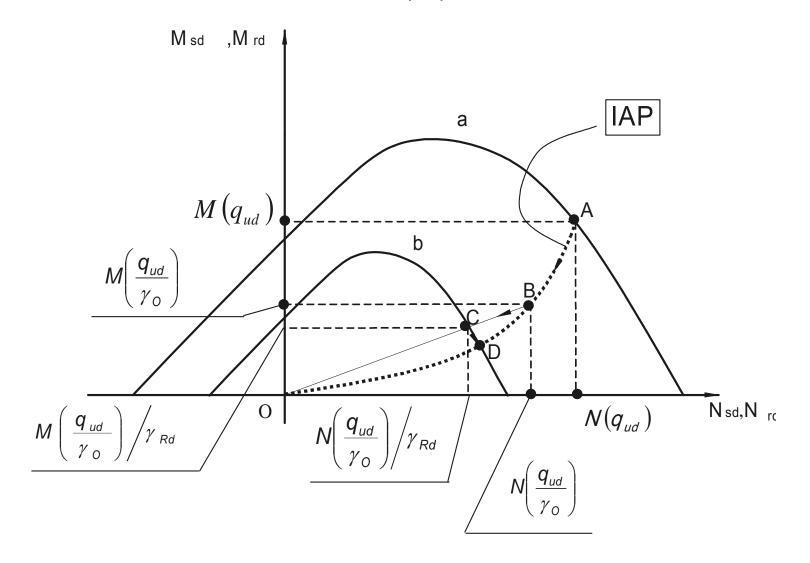
Application for scalar combination of internal actions and overproportional structural behaviour


Dissemination of information for training - Vienna, 4-6 October 2010

\$

Safety format

25


Application for vectorial combination of internal actions and underproportional structural behaviour

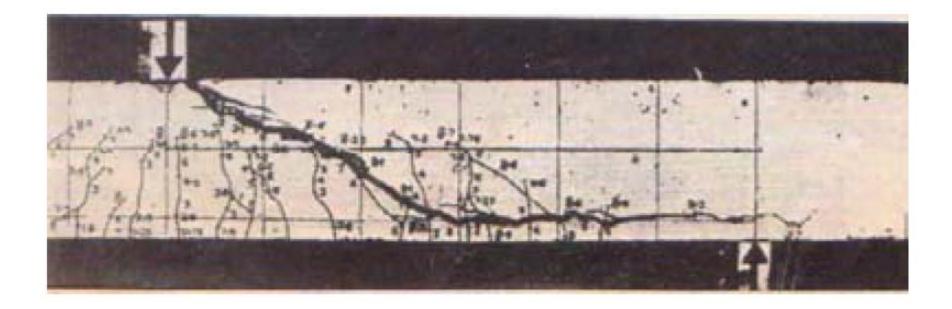
Dissemination of information for training – Vienna, 4-6 October 2010

Safety format Application

Application for vectorial combination of internal actions and overproportional structural behaviour

Dissemination of information for training – Vienna, 4-6 October 2010

For vectorial combination and $\gamma_{Rd} = \gamma_{Sd} = 1.00$ the safety check is satisfied if:


$$M_{ED} \leq M_{Rd} \left(\frac{q_{ud}}{\gamma_{0'}} \right)$$

and

$$N_{ED} \leq N_{Rd} \left(\frac{q_{ud}}{\gamma_{0'}} \right)$$

Dissemination of information for training - Vienna, 4-6 October 2010

Concrete slabs without shear reinforcement

Shear resistance V_{Rd,c} governed by shear flexure failure: shear crack develops from flexural crack

Dissemination of information for training - Vienna, 4-6 October 2010

Concrete slabs without shear reinforcement

Prestressed hollow core slab

Shear resistance $V_{Rd,c}$ governed by shear tension failure: crack occurs in web in region uncracked in flexure

Dissemination of information for training – Vienna, 4-6 October 2010

Shear design value under which no shear reinforcement is necessary in elements unreinforced in shear (general limit)

$$V_{Rd,c} = C_{Rd,c} k (100 \,\rho_l f_{ck})^{1/3} b_w d$$

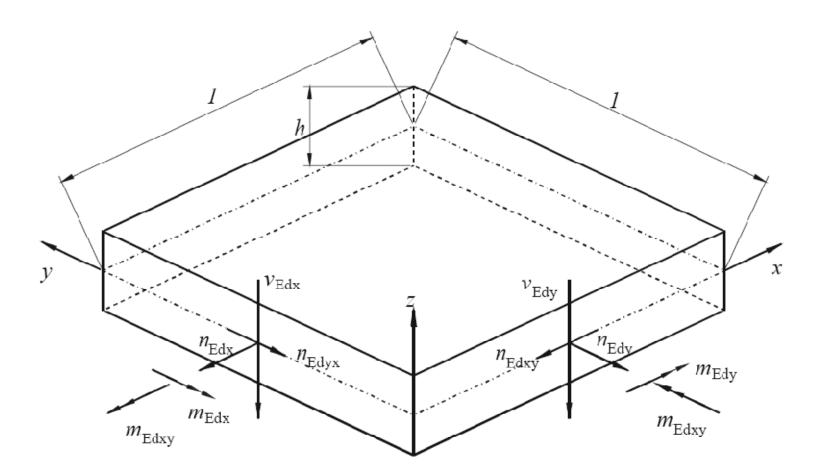
$C_{Rd,c}$	coefficient derived from tests (recommended 0.12)
C _{Rd,c} k	size factor = 1 + $\sqrt{(200/d)}$ with d in meter
ρ_{l}	longitudinal reinforcement ratio (≤0,02)
f _{ck}	characteristic concrete compressive strength
b _w	smallest web width
d	effective height of cross section

Dissemination of information for training – Vienna, 4-6 October 2010

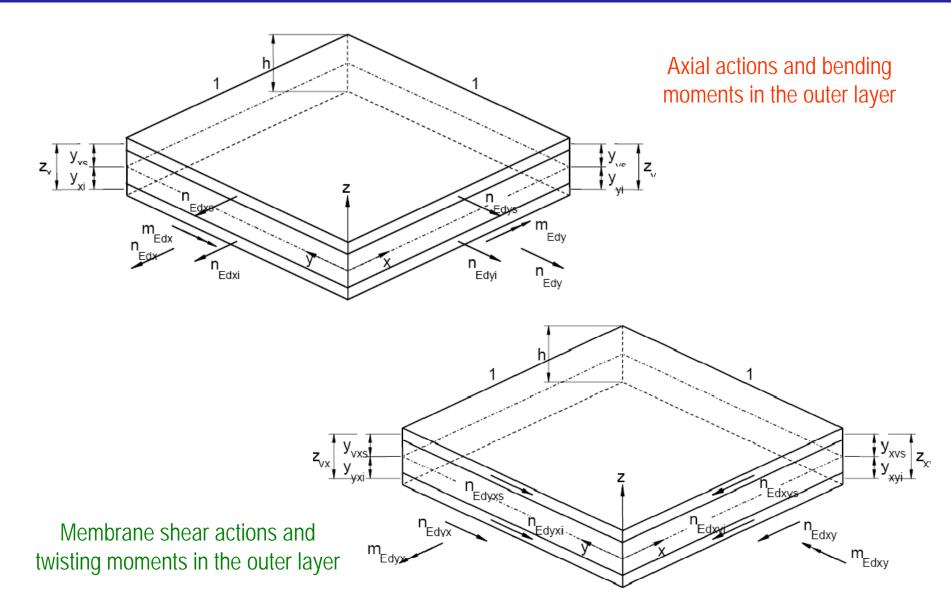
Shear design value under which no shear reinforcement is necessary in elements unreinforced in shear (general limit)

Minimum value for $V_{Rd,c}$

$$V_{Rd,c} = v_{min} b_w d$$


Values for v_{min} (N/mm²)

	d=200	d=400	d=600	d=800
C20	0,44	0,35	0,25	0,29
C40	0,63	0,49	0,44	0,41
C60	0,77	0,61	0,54	0,50
C80	0,89	0,70	0,62	0,58


Dissemination of information for training – Vienna, 4-6 October 2010

Annex $LL \Rightarrow$ Concrete shell elements

A powerfull tool to design 2D elements

Dissemination of information for training - Vienna, 4-6 October 2010

Dissemination of information for training – Vienna, 4-6 October 2010

- Out of plane shear forces v_{Edx} and v_{Edy} are applied to the inner layer with lever arm z_c, determined with reference to the centroid of the appropriate layers of reinforcement.
- For the design of the inner layer the principal shear v_{Edo} and its direction ϕ_o should be evaluated as follows:

$$v_{\rm Edo} = \sqrt{v_{\rm Edx}^2 + v_{\rm Edy}^2}$$

$$\tan \varphi_o = \frac{v_{\rm Edy}}{v_{\rm Edx}}$$

Dissemination of information for training - Vienna, 4-6 October 2010

In the direction of principal shear the shell element behaves like a beam and the appropriate design rules should therefore be applied.

$$\rho_{\rm l} = \rho_{\rm x} \cos^2 \varphi_{\rm o} + \rho_{\rm y} \sin^2 \varphi_{\rm o}$$

Dissemination of information for training - Vienna, 4-6 October 2010

2

When shear reinforcement is necessary, the longitudinal force resulting from the truss model V_{Fdo} ·cot θ gives rise to the following membrane forces in *x* and *y* directions:

$$n_{\rm Edyc} = \frac{v_{\rm Edy}^2}{v_{\rm Edo}} \cot \theta \qquad n_{\rm Edxc} = \frac{v_{\rm Edx}^2}{v_{\rm Edo}} \cot \theta$$
$$n_{\rm Edxyc} = \frac{v_{\rm Edx} \ v_{\rm Edy}}{v_{\rm Edo}} \cot \theta \qquad n_{\rm Edyxc} = n_{\rm Edxyc} = \frac{v_{\rm Edx} \ v_{\rm Edy}}{v_{\rm Edo}} \cot \theta$$

36

Dissemination of information for training - Vienna, 4-6 October 2010

 The outer layers should be designed as membrane elements, using the design rules of clause 6 (109) and Annex F.

- Compressive stress field strength defined as a function of principal stresses
- If both principal stresses are comprensive

Dissemination of information for training - Vienna, 4-6 October 2010

$$\sigma_{cd \max} = 0.85 f_{cd} \frac{1+3,80\alpha}{(1+\alpha)^2}$$
 is the ratio between the two principal stresses ($\alpha \le 1$)

38

Dissemination of information for training – Vienna, 4-6 October 2010

Where a plastic analysis has been carried out with $\theta = \theta_{el}$ and at least one principal stress is in tension and no reinforcement yields

$$\sigma_{cd \max} = f_{cd} \left[0,85 - \frac{\sigma_s}{f_{yd}} \left(0,85 - \nu \right) \right]$$

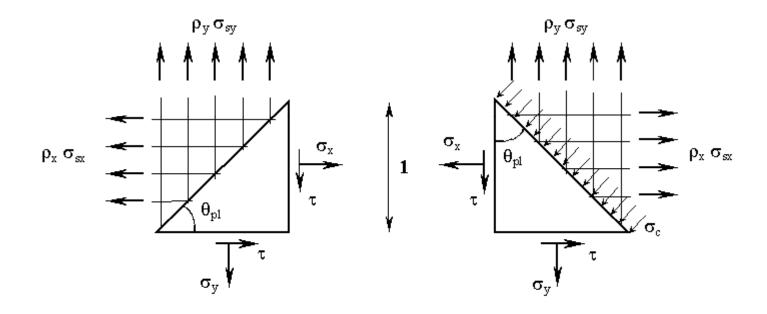
is the maximum tensile stress
value in the reinforcement

Where a plastic analysis is carried out with yielding of any reinforcement

$$\sigma_{cd \max} = \nu f_{cd} \left(1 - 0,032 | \theta - \theta_{el} | \right)$$
is the angle to the X axis of plastic
compression field at ULS
(principal compressive stress)
 $|\theta - \theta_{el}| \le 15$ degrees is the inclination to the X axis of
the elastic analysis

Dissemination of information for training – Vienna, 4-6 October 2010

Model by Carbone, Giordano, Mancini


Assumption: strength of concrete subjected to biaxial stresses is correlated to the angular deviation between angle ϑ_{el} which identifies the principal compressive stresses in incipient cracking and angle ϑ_{u} which identifies the inclination of compression stress field in concrete at ULS

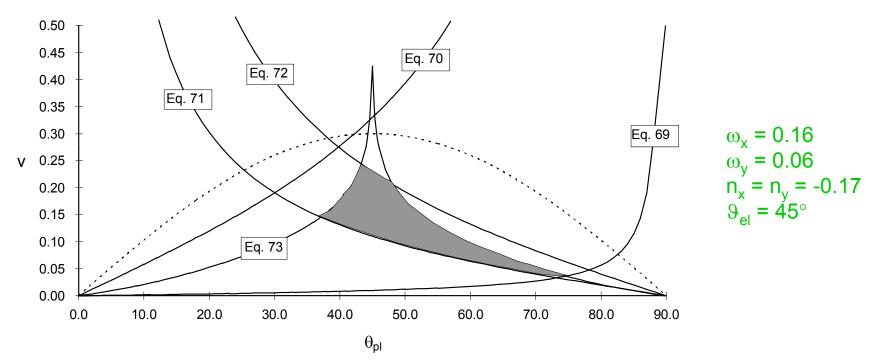
With increasing $\Delta \vartheta$ concrete damage increases progressively and strength is reduced accordingly

Dissemination of information for training – Vienna, 4-6 October 2010

Plastic equilibrium condition

$$\sigma_{x} + \tau \cot \vartheta_{pl} - \sigma_{sx} \rho_{x} = 0$$

$$\tau + \sigma_{x} \cot \vartheta_{pl} - \sigma_{sy} \rho_{y} \cot \vartheta_{pl} = 0$$


$$\tau \tan \vartheta_{pl} - \sigma_{x} + \sigma_{sx} \rho_{x} - \sigma_{c} = 0$$

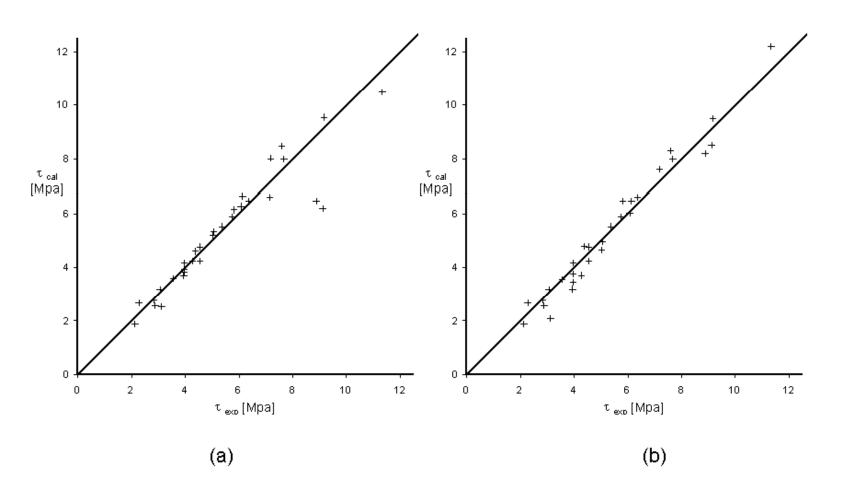
$$\tau - \sigma_{y} \tan \vartheta_{pl} + \sigma_{sy} \rho_{y} \tan \vartheta_{pl} - \sigma_{c} \tan \vartheta_{pl} = 0$$

41

Dissemination of information for training – Vienna, 4-6 October 2010

Graphical solution of inequalities system

$$v \ge -(\omega_x + n_x) \tan \vartheta_{pl}$$
 (69)

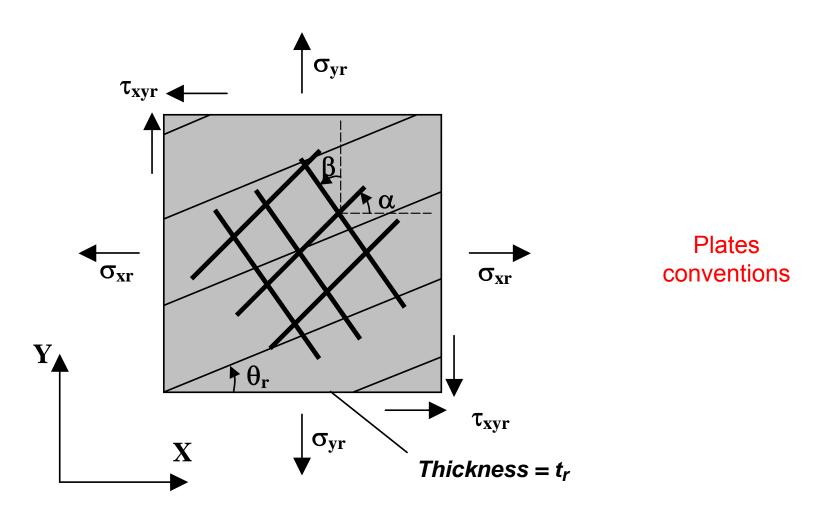

 $v \le (\omega_x - n_x) \tan \vartheta_{pl}$ (70)

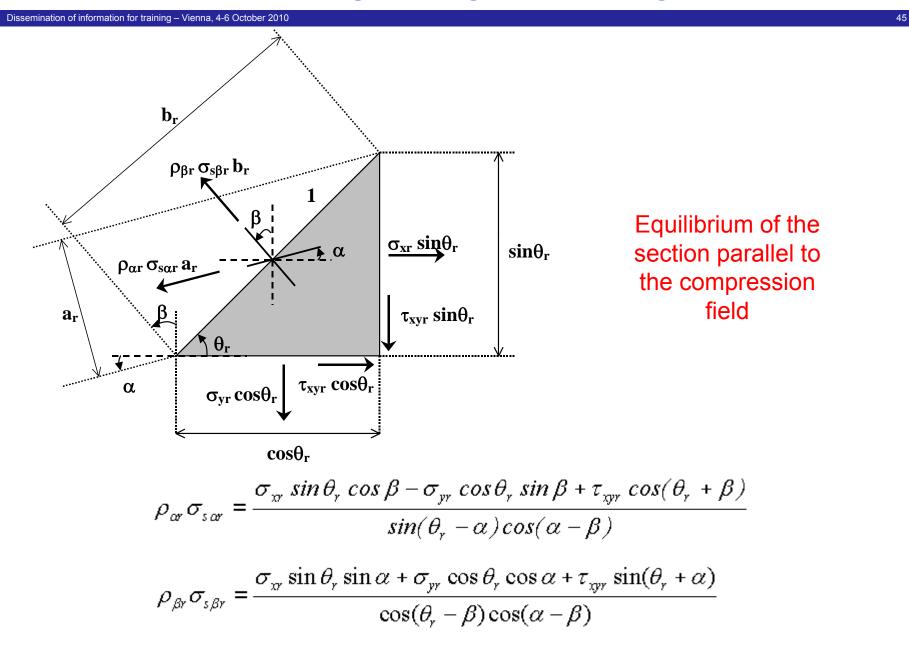
$$\frac{\tau}{\left|\mathbf{f}_{c}^{'}\right|}\left(\tan \vartheta_{p1} + \cot \vartheta_{p1}\right) - \left[0.55 - 0.12\ln\left|\vartheta_{p1} - \vartheta_{e1}\right|\right] = 0 \qquad \mathbf{v} \ge \left(-\omega_{y} + n_{y}\right)\cot \vartheta_{p1} \quad (71)$$
$$\mathbf{v} \le \left(\omega_{y} - n_{y}\right)\cot \vartheta_{y} \quad (72)$$

 $\mathbf{v} \le (\boldsymbol{\omega}_{\mathrm{y}} - \mathbf{n}_{\mathrm{y}}) \cot \vartheta_{\mathrm{pl}} \qquad (72)$

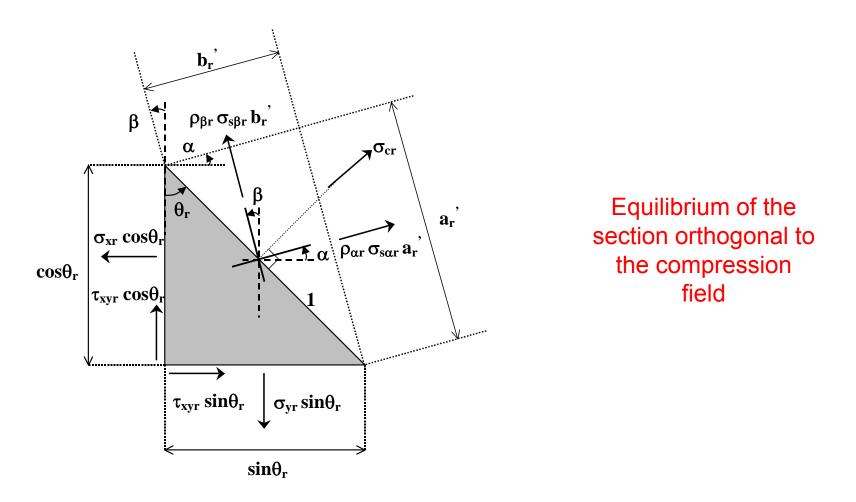
$$\mathbf{v} \le \mathbf{v} \sin \vartheta_{\mathrm{pl}} \cos \vartheta_{\mathrm{pl}} \tag{73}$$

Dissemination of information for training – Vienna, 4-6 October 2010




Experimental versus calculated panel strenght by Marti and Kaufmann (a) and by Carbone, Giordano and Mancini (b)

Dissemination of information for training – Vienna, 4-6 October 2010


44

Skew reinforcement

Dissemination of information for training - Vienna, 4-6 October 2010

 $-\sigma_{xr}\cos\theta_{r} + \tau_{xyr}\sin\theta_{r} + \rho_{\alpha r}\sigma_{s\alpha r}a'_{r}\cos\alpha - \rho_{\beta r}\sigma_{s\beta r}b'_{r}\sin\beta + \sigma_{cr}\cos\theta_{r} = 0$ $-\sigma_{yr}\sin\theta_{r} + \tau_{xyr}\cos\theta_{r} + \rho_{\alpha r}\sigma_{s\alpha r}a'_{r}\sin\alpha - \rho_{\beta r}\sigma_{s\beta r}b'_{r}\cos\beta + \sigma_{cr}\sin\theta_{r} = 0$

Dissemination of information for training – Vienna, 4-6 October 2010

Use of genetic algorithms (Genecop III) for the optimization of reinforcement and concrete verification

Objective: minimization of global reinforcement

Stability: find correct results also if the starting point is very far from the actual solution

Section 7 \Rightarrow Serviceability limit state (SLS)

- Compressive stresses limited to k₁f_{ck} with exposure classes XD, XF, XS (Microcracking)
 - k₁ = 0.6 (recommended value)
 - k₁ = 0.66 in confined concrete (recommended value)

Dissemination of information for training – Vienna, 4-6 October 2010

- Crack control

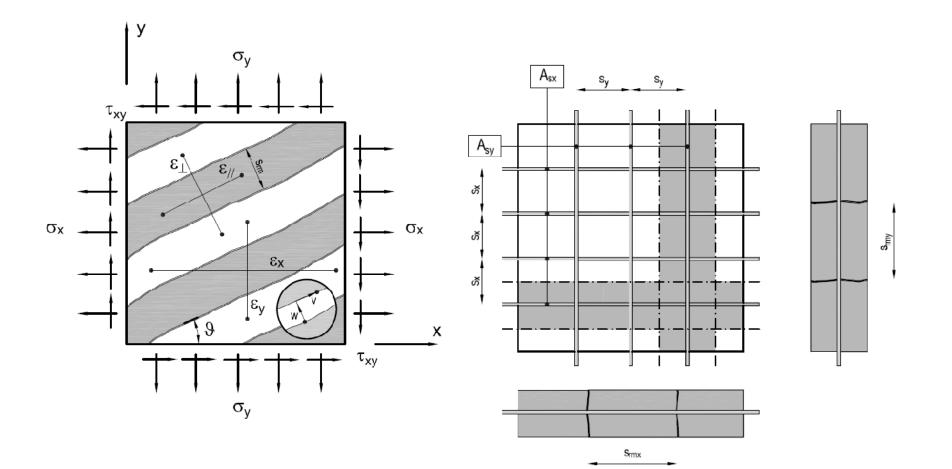
Exposure Class	Reinforced members and prestressed members with unbonded tendons	Prestressed members with bonded tendons
	Quasi-permanent load combination	Frequent load combination
X0, XC1	0,3 ¹	0,2
XC2, XC3, XC4		0,2 ²
XD1, XD2, XD3 XS1, XS2, XS3	0,3	Decompression

- **Note 1:** For X0, XC1 exposure classes, crack width has no influence on durability and this limit is set to guarantee acceptable appearance. In the absence of appearance conditions this limit may be relaxed.
- **Note 2:** For these exposure classes, in addition, decompression should be checked under the quasi-permanent combination of loads.

Decompression requires that concrete is in compression within a distance of 100 mm (recommended value) from bondend tendons 49

Dissemination of information for training – Vienna, 4-6 October 2010

For skew cracks where a more refined model is not available, the following expression for the may be used:


$$\mathbf{s}_{\rm rm} = \left(\frac{\cos\theta}{\mathbf{s}_{\rm rm,x}} + \frac{\sin\theta}{\mathbf{s}_{\rm rm,y}}\right)^{-1}$$

where $s_{rm,x}$ and $s_{rm,y}$ are the mean spacing between the cracks in two ideal ties arranged in the x and y directions. The mean opening of cracks can than evaluated as:

$$W_{\rm m} = S_{\rm rm} (\varepsilon_{\perp} - \varepsilon_{\rm c,\perp})$$

where ϵ_{\perp} and $\epsilon_{c,\perp}$ represent the total mean strain and the mean concrete strain, evaluated in the direction orthogonal to the crack

Dissemination of information for training - Vienna, 4-6 October 2010

51

Dissemination of information for training – Vienna, 4-6 October 2010

Expressing the compatibility of displacement along the crack, the total strain and the corresponding stresses in reinforcement in x and y directions may be evaluated, as a function of the displacements components w and v, respectively orthogonal and parallel to the crack direction.

Dissemination of information for training – Vienna, 4-6 October 2010

Moreover, by the effect of w and v, tangential and orthogonal forces along the crack take place, that can be evaluated by the use of a proper model able to describe the interlock effect.

Dissemination of information for training – Vienna, 4-6 October 2010

Finally, by imposition of equilibrium conditions between internal actions and forces along the crack, a nonlinear system of two equations in the unknowns w and v may be derived, from which those variables can be evaluated.

Dissemination of information for training – Vienna, 4-6 October 2010

Distiction between

Annex B \Rightarrow Creep and shrinkage strain

- ♣ HPC, class R cement, strength ≥ 50/60 MPa with or without silica fume
- ✤ Thick members → kinetic of basic creep and drying creep is different
 - Autogenous shrinkage: related to process of hydratation

Drying shrinkage: related to humidity exchanges

Specific formulae for SFC (content > 5% of cement by weight)

Dissemination of information for training - Vienna, 4-6 October 2010

- Autogenous shrinkage

• For t < 28 days $f_{ctm}(t) / f_{ck}$ is the main variable

$$\frac{f_{cm}(t)}{f_{ck}} < 0.1 \qquad \mathcal{E}_{ca}(t, f_{ck}) = 0$$

$$\frac{f_{cm}(t)}{f_{ck}} \ge 0.1 \qquad \mathcal{E}_{ca}(t, f_{ck}) = (f_{ck} - 20) \left(2.2 \frac{f_{cm}(t)}{f_{ck}} - 0.2\right) 10^{-6}$$

• For $t \ge 28$ days

$$\varepsilon_{ca}(t,f_{ck}) = (f_{ck} - 20) \left[2.8 - 1.1 \exp(-t/96) \right] 10^{-6}$$
97% of total autogenous shrinkage occurs

within 3 mounths

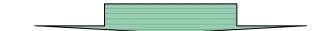
Dissemination of information for training - Vienna, 4-6 October 2010

- Drying shrinkage ($RH \le 80\%$)

$$\varepsilon_{cd}(t,t_s,f_{ck},h_0,RH) = \frac{\mathrm{K}(f_{ck}) \left[72\exp(-0.046f_{ck}) + 75 - RH\right] (t-t_s) 10^{-6}}{(t-t_s) + \beta_{cd} h_0^2}$$

with:

$$K(f_{ck}) = 18$$
 if $f_{ck} \le 55$ MPa


 $K(f_{ck}) = 30 - 0.21 f_{ck}$
 if $f_{ck} > 55$ MPa

 $\beta_{cd} = \begin{pmatrix} 0.007 & \text{for silica} - \text{fume concrete} \\ 0.021 & \text{for non silica} - \text{fume concrete} \end{cases}$

Dissemination of information for training - Vienna, 4-6 October 2010

- Creep

$$\varepsilon_{cc}\left(t,t_{0}\right) = \frac{\sigma\left(t_{0}\right)}{E_{c28}} \left[\Phi_{b}\left(t,t_{0}\right) + \Phi_{d}\left(t,t_{0}\right)\right]$$

Dissemination of information for training – Vienna, 4-6 October 2010

- Basic creep

$$\Phi_{b}\left(t, t_{0}, f_{ck}, f_{cm}\left(t_{0}\right)\right) = \phi_{b0} \frac{\sqrt{t - t_{0}}}{\left[\sqrt{t - t_{0}} + \beta_{bc}\right]}$$

with:
$$\phi_{b0} = \begin{pmatrix} 3.6 \\ f_{cm}(t_0)^{0.37} & \text{for silica - fume concrete} \\ 1.4 & \text{for non silica - fume concrete} \end{pmatrix}$$

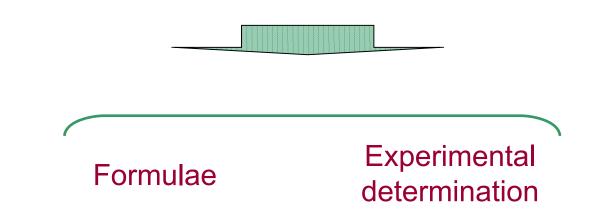
 $\beta_{bc} = \begin{pmatrix} 0.37 \exp\left(2.8 \frac{f_{cm}(t_0)}{f_{ck}}\right) & \text{for silica - fume concrete} \\ 0.4 \exp\left(3.1 \frac{f_{cm}(t_0)}{f_{ck}}\right) & \text{for non silica - fume concrete} \end{pmatrix}$

Dissemination of information for training - Vienna, 4-6 October 2010

- Drying creep

$$\Phi_d(t,t_s,t_0,f_{ck},RH,h_0) = \phi_{d0} \left[\varepsilon_{cd}(t,t_s) - \varepsilon_{cd}(t_0,t_s) \right]$$

with:
$$\phi_{d0} = \begin{pmatrix} 1000 & \text{for silica - fume concrete} \\ 3200 & \text{for non silica - fume concrete} \end{pmatrix}$$


Dissemination of information for training – Vienna, 4-6 October 2010

- Experimental identification procedure

At least 6 months

- Long term delayed strain estimation

Dissemination of information for training - Vienna, 4-6 October 2010

- Safety factor for long term extrapolation $\gamma_{\rm lt}$

<i>t</i> (age of concrete for estimating the delayed strains)	$\gamma_{ m lt}$
t < 1 year	1
t = 5 years	1,07
<i>t</i> = 10 years	1,1
<i>t</i> = 50 years	1,17
<i>t</i> = 100 years	1,20
<i>t</i> = 300 years	1,25

Dissemination of information for training - Vienna, 4-6 October 2010

Annex KK ⇒ Structural effects of time dependent behaviour of concrete

Assumptions

Creep and shrinkage indipendent of each other

Average values for creep and shrinkage within the section

Validity of principle of superposition (Mc-Henry)

Dissemination of information for training – Vienna, 4-6 October 2010

Type of analysis	Comment and typical application
General and incremental step-by-step method	These are general methods and are applicable to all structures. Particularly useful for verification at intermediate stages of construction in structures in which properties vary along the length (e.g.) cantilever construction.
Methods based on the theorems of linear viscoelasticity	Applicable to homogeneous structures with rigid restraints.
The ageing coefficient method	This mehod will be useful when only the long -term distribution of forces and stresses are required. Applicable to bridges with composite sections (precast beams and in-situ concrete slabs).
Simplified ageing coefficient method	Applicable to structures that undergo changes in support conditions (e.g.) spanto-span or free cantilever construction.

Dissemination of information for training – Vienna, 4-6 October 2010

- General method

$$\varepsilon_{c}(t) = \frac{\sigma_{0}}{E_{c}(t_{0})} + \varphi(t,t_{0})\frac{\sigma_{0}}{E_{c}(28)} + \sum_{i=1}^{n} \left(\frac{1}{E_{c}(t_{i})} + \frac{\varphi(t,t_{i})}{E_{c}(28)}\right) \Delta \sigma(t_{i}) + \varepsilon_{cs}(t,t_{s})$$

A step by step analysis is required

- Incremental method

• At the time t of application of σ the creep strain $\epsilon_{cc}(t)$, the potential creep strain $\epsilon_{\infty cc}(t)$ and the creep rate are derived from the whole load history

Dissemination of information for training – Vienna, 4-6 October 2010

The potential creep strain at time t is:

$$\frac{d\varepsilon_{\infty cc}(t)}{dt} = \frac{d\sigma}{dt} \frac{\varphi(\infty, t)}{E_{c28}}$$

• t \Rightarrow t_e under constant stress from te the same $\varepsilon_{cc}(t)$ and $\varepsilon_{\infty cc}(t)$ are obtained

$$\varepsilon_{\infty cc}\left(t\right)\cdot\beta_{c}\left(t,t_{e}\right)=\varepsilon_{cc}\left(t\right)$$

 Creep rate at time t may be evaluated using the creep curve for t_e

$$\frac{d\varepsilon_{cc}(t)}{dt} = \varepsilon_{\infty cc}\left(t\right) \frac{\partial\beta_{c}\left(t,t_{e}\right)}{\partial t}$$

Dissemination of information for training – Vienna, 4-6 October 2010

For unloading procedures

$$|\varepsilon_{cc}(t)| > |\varepsilon_{\infty cc}(t)|$$

and $\,t_{e}\,$ accounts for the sign change

$$\begin{split} \varepsilon_{ccMax}(t) - \varepsilon_{cc}(t) &= \left(\varepsilon_{ccMax}(t) - \varepsilon_{\infty cc}(t)\right) \cdot \beta_{c}\left(t, t_{e}\right) \\ \frac{d\left(\varepsilon_{ccMax}(t) - \varepsilon_{cc}(t)\right)}{dt} &= \left(\varepsilon_{ccMax}(t) - \varepsilon_{\infty cc}(t)\right) \cdot \frac{\partial \beta_{c}\left(t, t_{e}\right)}{\partial t} \end{split}$$

where $\epsilon_{\text{ccMax}}(t)$ is the last extreme creep strain reached before ~t

Dissemination of information for training – Vienna, 4-6 October 2010

68

- Application of theorems of linear viscoelasticity

- J(t,t₀) an R(t,t₀) fully characterize the dependent properties of concrete
- Structures homogeneous, elastic, with rigid restraints
- Direct actions effect

$$S(t) = S_{el}(t)$$
$$D(t) = E_C \int_0^t J(t,\tau) dD_{el}(\tau)$$

Dissemination of information for training – Vienna, 4-6 October 2010

Indirect action effect

$$D(t) = D_{el}(t)$$
$$S(t) = \frac{1}{E_C} \int_0^t R(t,\tau) \, dS_{el}(\tau)$$

Structure subjected to imposed constant loads whose initial statical scheme (1) is modified into the final scheme (2) by introduction of additional restraints at time t₁ ≥ t₀

$$S_{2}(t) = S_{el,1} + \xi(t, t_{0}, t_{1}) \Delta S_{el,1}$$
$$\xi(t, t_{0}, t_{1}) = \int_{t_{1}}^{t} R(t, \tau) dJ(\tau, t_{0})$$
$$\xi(t, t_{0}, t_{0}^{+}) = 1 - \frac{R(t, t_{0})}{E_{C}(t_{0})}$$

Dissemination of information for training – Vienna, 4-6 October 2010

When additional restraints are introduced at different times
 t_i ≥ t₀, the stress variation by effect of restrain j introduced at
 t_i is indipendent of the history of restraints added at t_i < t_i

$$S_{j+1} = S_{el,1} + \sum_{i=1}^{j} \xi(t, t_0, t_i) \Delta S_{el,i}$$

- Ageing coefficient method

Integration in a single step and correction by means of $~\chi~~(\chi{\cong}0.8)$

$$\int_{\tau=t_0}^t \left[\frac{E_c(28)}{E_c(\tau)} + \varphi_{28}(t,\tau) \right] d\sigma(\tau) = \left[\frac{E_c(28)}{E_c(t_0)} + \chi(t,t_0)\varphi_{28}(t,t_0) \right] \Delta\sigma_{t_0 \to t}$$

Dissemination of information for training - Vienna, 4-6 October 2010

- Simplified formulae

$$S_{\infty} = S_{0} + (S_{1} - S_{0}) \frac{\varphi(\infty, t_{0}) - \varphi(t_{1}, t_{0})}{1 + \chi \varphi(\infty, t_{1})} \frac{E_{c}(t_{1})}{E_{c}(t_{0})}$$

- where: S_0 and S_1 refer respectively to construction and final statical scheme
 - t_1 is the age at the restraints variation

Dissemination of information for training – Vienna, 4-6 October 2010

EN 1992-2 ⇒ A new design code to help in conceiving more and more enhanced concrete bridges

EUROCODE 2 – Design of concrete structures Concrete bridges: design and detailing rules

Dissemination of information for training – Vienna, 4-6 October 2010

Thank you for the kind attention

73

Concrete bridge design (EN1992-2) Application to the design example

Emmanuel Bouchon Sétra

Contents

1. Local justifications of the concrete slab

- 1. Durability cover to reinforcement
- 2. Verifications of the transverse reinforcement
 - ULS bending resistance
 - SLS stress limitations
 - SLS crack control
 - ULS vertical shear force
 - ULS longitudinal shear strees interaction with transverse bending
 - ULS fatigue of the reinforcement under transverse bending
- 3. Punching
- 4. Combination of global and local effects in longitudinal direction

2. Second order effects in high piers

3. Strut and tie models for the design of pier heads

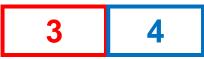
Dissemination of information for training – Vienna, 4-6 October 2010

Minimum cover, *c*_{min} (EN1992-1-1, 4.4.1.2)

 $c_{\min} = \max \{c_{\min,b}; c_{\min,dur}; 10 \text{ mm}\}$

- c_{min,b} (bond) is given in table 4.2
 c_{min,b} = diameter of bar (max aggregate size ≤ 32 mm
 c_{min,b} = 20 mm on top face of the slab
 c_{min,b} = 25 mm on bottom face at mid span between
 the steel main girders
- c_{min,dur} (durability) is given in table 4.4N, it depends on : the exposure class (table 4.1) the structural class (table 4.3N)

Local justification of the concrete slab Durability – cover to reinforcement


Dissemination of information for training - Vienna, 4-6 October 2010

Structural class (table 4.3 N)

Top face of the slab : XC3 Bottom face of the slab : XC4

Structural Class								
Criterion	Exposure Class according to Table 4.1							
Criterion	X0	XC1	XC2/XC3	XC4	XD1	XD2 / XS1	XD3/XS2/XS3	
Design Working Life of 100 years	increase class by 2	increase class by 2	increase class by 2	increase class by 2	increase class by 2	increase class by 2	increase class by 2	
Strength Class ^{1) 2)}	≥ C30/37 reduce class by 1	≥ C30/37 reduce class by 1	≥ C35/45 reduce class by 1	≥ C40/50 reduce class by 1	≥ C40/50 reduce class by 1	≥ C40/50 reduce class by 1	\ge C45/55 reduce class by 1	
Member with slab geometry (position of reinforcement not affected by construction process)	reduce class by 1	reduce class by 1	reduce class by 1	reduce class by 1	reduce class by 1	reduce class by 1	reduce class by 1	
Special Quality Control of the concrete production ensured	reduce class by 1	reduce class by 1	reduce class by 1	reduce class by 1	reduce class by 1	reduce class by 1	reduce class by 1	

Final class :

Local justification of the concrete slab Durability – cover to reinforcement

Dissemination of information for training – Vienna, 4-6 October 2010

c_{min,dur} (table 4.4 N)

Top face of the slab : XC3 – str. class S3 Bottom face of the slab : XC4 – str. class S4

Table 4.4N: Values of minimum cover c_{min,dur}, requirements with regard to durability for reinforcement steel in accordance with EN 10080.

Environmental Requirement for c _{min,d}				(mm)				
Structural Exposure Class accordin				ng to	Table	4.1			
Class	X0	XC1	XC2	XC3	Х	C4	XD1 / XS1	XD2 / XS2	XD3 / XS3
S1	10	10	10		1	5	20	25	30
S2	10	10	15		2	0	25	30	35
S3	10	10	20		2	5	30	35	40
S4	10	15	25		3	0	35	40	45
S5	15	20	30		3	5	40	45	50
S6	20	25	35		4	0	45	50	55

5

Dissemination of information for training – Vienna, 4-6 October 2010

6

 $c_{\text{nom}} = c_{\text{min}} + \Delta c_{\text{dev}}$ (allowance for deviation, expr. 4.1)

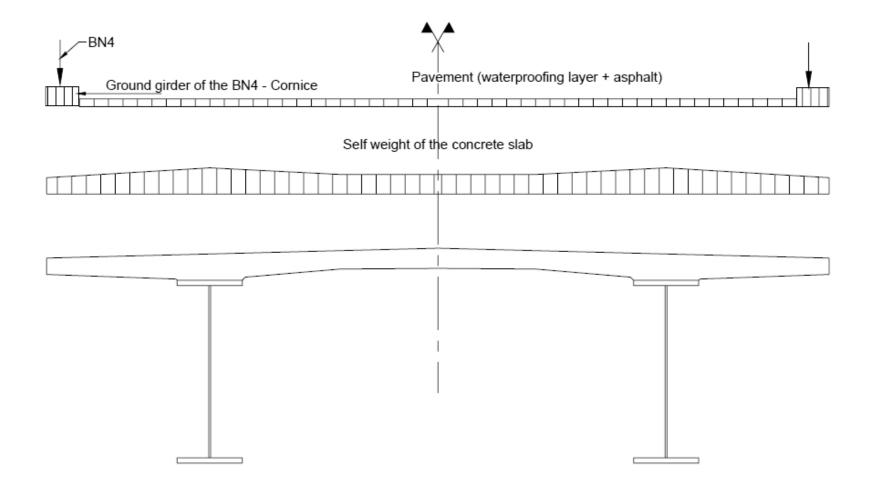
 $\Delta c_{dev} = 10 \text{ mm} (\text{recommended value} 4.4.1.3 (1)P)$

 Δc_{dev} may be reduced in certain situations (4.4.1.3 (3))

• in case of quality assurance system with measurements of the concrete cover, the recommended value is:

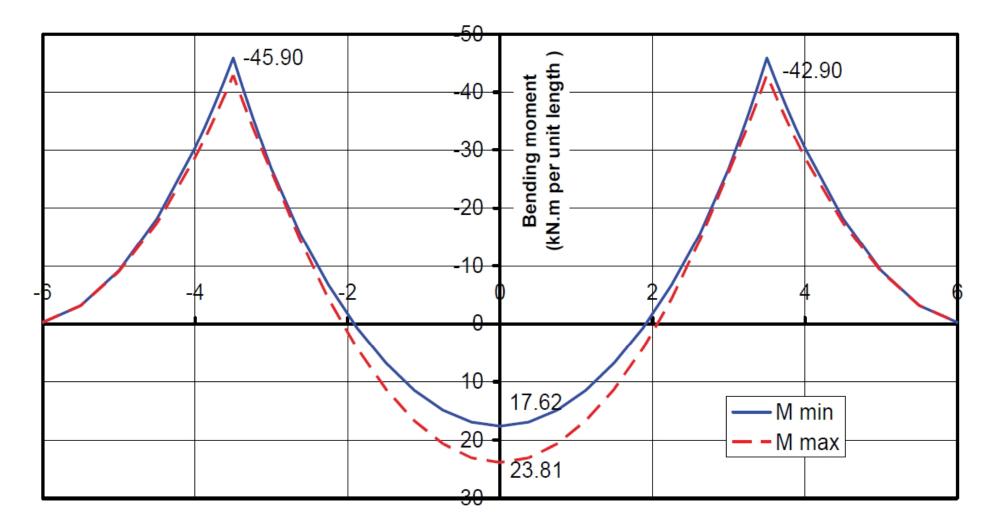
10 mm $\geq \Delta c_{dev} \geq 5$ mm

Cover (mm)	c _{min,b}	c _{min,dur}	$\Delta \boldsymbol{c}_{dev}$	C _{nom}
Top face of the slab	20	20	10	30
Bottom face of the slab	25	30	10	40

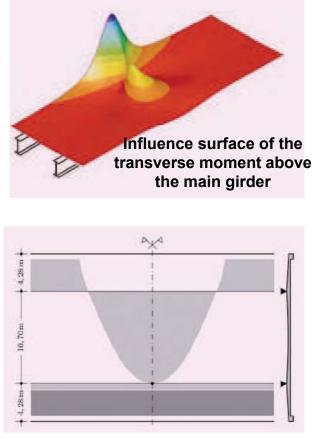

Dissemination of information for training – Vienna, 4-6 October 2010

- The verifications of transverse bending and vertical shear are performed on an equivalent beam representing a 1-m-wide slab strip.
- Analysis:
 - For permanent loads, which are uniformly distributed over the length of the deck, the internal forces may be calculated on a simplified model: isostatic beam on two supports.
 - For traffic loads, it is necessary to take into account the 2-dimensional behaviour of the slab. For the design example, the extreme values of transverse internal forces and moments are obtained reading charts established by Setra for the local bending of the slab in twin-girder composite bridges. These charts are derived from the calculation of influence surfaces on a finite element model of a typical composite deck slab.

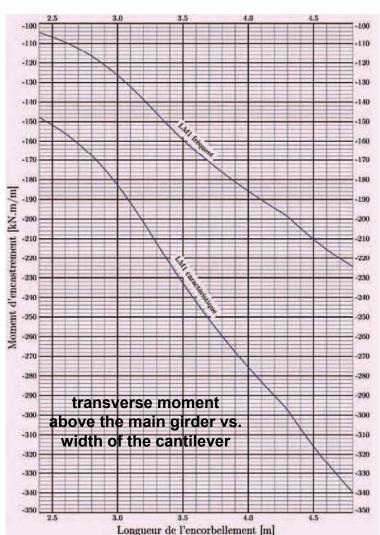
7


Dissemination of information for training – Vienna, 4-6 October 2010

Analysis - Transverse distribution of permanent loads


Dissemination of information for training - Vienna, 4-6 October 2010

Analysis - transverse bending moment envelope due to permanent loads

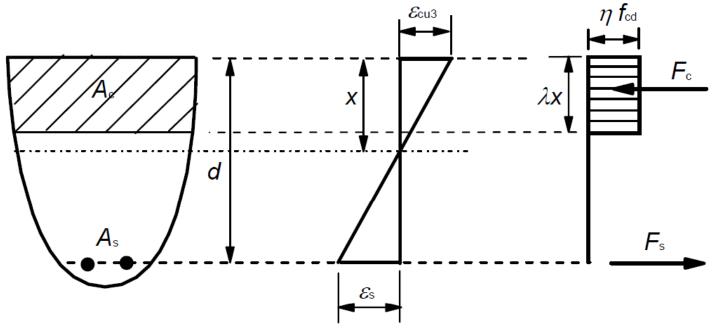


Dissemination of information for training - Vienna, 4-6 October 2010

Position of UDL

Dissemination of information for training - Vienna, 4-6 October 2010

Combination of actions

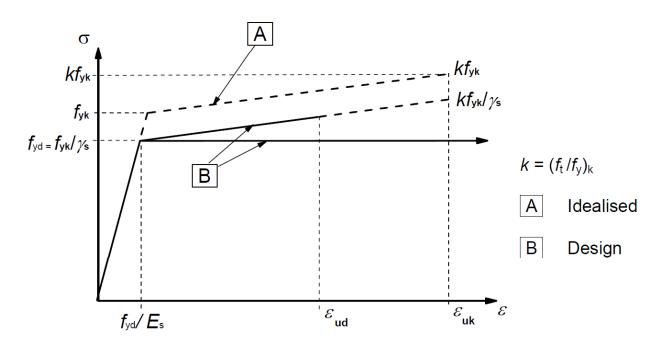

Transverse bending moment

<i>M</i> (kNm/m)	Quasi permanent SLS	Frequent SLS	Characteristic SLS	ULS
Section above the main girder	-46	-156	-204	-275
Section at mid-span	24	132	184	248

Dissemination of information for training – Vienna, 4-6 October 2010

Bending resistance at ULS (EN1992-1-1, 6.1) Stress-strain relationships:

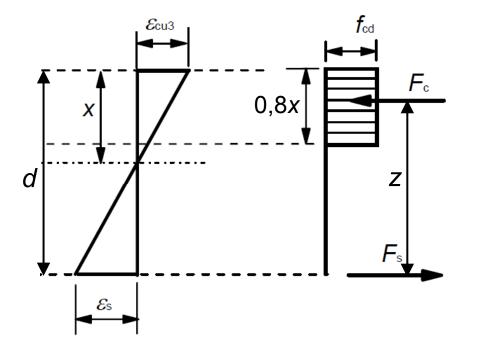
• for the concrete, a simplified rectangular stress distribution: $\lambda = 0.80$ and $\eta = 1.00$ as $f_{ck} = 35$ MPa ≤ 50 MPa $f_{cd} = 19.8$ MPa (with $\alpha_{cc} = 0.85$ – recommended value) $\varepsilon_{cu3} = 3.5$ mm/m



Dissemination of information for training – Vienna, 4-6 October 2010

Bending resistance at ULS

Stress-strain relationships:


- for the reinforcement, a bi-linear stress-strain relationship with strain hardening (Class B steel bars according to Annex C to EN1992-1-1): f_{yd} = 435 Mpa, k = 1,08, ε_{ud} = 0,9. ε_{uk} = 45 mm/m (recommended value)
- for $\varepsilon_s \le f_{yd}/E_s$ $\sigma_s = E_s \varepsilon_s$ • for $\varepsilon_s \ge f_{yd}/E_s$ $\sigma_s = f_{yd} + (k-1) f_{yd} (\varepsilon_s - f_{yd}/E_s) / (\varepsilon_{uk} - f_{yd}/E_s)$

Dissemination of information for training – Vienna, 4-6 October 2010

Bending resistance at ULS

- $\varepsilon_{\rm s} = \varepsilon_{\rm cu3} (d-x)/x$
- $\sigma_s = f_{yd} + (k-1) f_{yd} (\varepsilon_s f_{yd}/E_s) / (\varepsilon_{uk} f_{yd}/E_s)$ (inclined top branch)
- Equilibrium : $N_{Ed} = 0 \Leftrightarrow A_s \sigma_s = 0.8b.x.f_{cd}$ where b = 1 m

- Then, x is the solution of a quadratic equation
- The resistant bending moment is given by:

 $M_{\rm Rd} = 0.8b.x.f_{\rm cd}(d-0.4x)$ = $A_{\rm s}\sigma_{\rm s}(d-0.4x)$ 14

Dissemination of information for training – Vienna, 4-6 October 2010

Bending resistance at ULS – design example

Section above the main steel girder (absolute values of moments)

- with d = 0,36 m and $A_s = 18,48$ cm² ($\phi 20$ every 0,17 m):
- x = 0,052 m, $\varepsilon_s = 20,6 \text{ mm/m}$ (< ε_{ud}) and $\sigma_s = 448 \text{ Mpa}$
- Therefore M_{Rd} = 0,281 MN.m > M_{Ed} = 0,275 MN.m

Section at mid-span between the main steel girder

- with d = 0,26 m and $A_s = 28,87$ cm² ($\phi 25$ every 0,17 m):
- x = 0,08 m, $\varepsilon_s = 7,9 \text{ mm/m}$ (< ε_{ud}) and $\sigma_s = 439 \text{ MPa}$
- Therefore M_{Rd} = 0,289 MN.m > M_{Ed} = 0,248 MN.m

Dissemination of information for training – Vienna, 4-6 October 2010

Calulation of normal stresses at SLS

EN 1992-1-1, 7.1(2):

(2) In the calculation of stresses and deflections, cross-sections should be assumed to be uncracked provided that the flexural tensile stress does not exceed $f_{ct,eff}$. The value of $f_{ct,eff}$ maybe taken as f_{ctm} or $f_{ctm,fl}$ provided that the calculation for minimum tension reinforcement is also based on the same value. For the purposes of calculating crack widths and tension stiffening f_{ctm} should be used.

If the flexural tensile stress is not greater than $f_{\rm ctm}$ (3,2 Mpa for C35/45), then it is not necessary to perform a calculation of normal stresses in the cracked section.

Dissemination of information for training – Vienna, 4-6 October 2010

Stress limitation under SLS characteristic combination

 The following limitations should be checked (EN1992-1-1, 7.2(5) and 7.2(2)) :

$$\sigma_{\rm s} \leq k_3 f_{\rm yk}$$
 = 0,8×500 = 400 MPa

$$\sigma_{\rm c} \le k_1 f_{\rm ck} = 0.6 \times 35 = 21$$
 MPa

where k_1 and k_3 are defined by the National Annex to EN1992-1-1 the recommended values are $k_1 = 0,6$ and $k_3 = 0,8$

• These stress calculations are performed neglecting the tensile concrete contribution. The most unfavourable tensile stresses σ_s in the reinforcement are generally provided by the long-term calculations, performed with a modular ratio *n* (reinforcement/concrete) equal to 15. The most unfavourable compressive stresses σ_c in the concrete are generally provided by the short-term calculations, performed with a modular ratio $n = E_s/E_{cm} = 5.9$ ($E_s = 200$ GPa for reinforcing steel and $E_{cm} = 34$ GPa for concrete C35/45).

Dissemination of information for training - Vienna, 4-6 October 2010

Stress limitation under SLS characteristic combination

- The design example in the section above the steel main girder gives d = 0,36 m, A_s = 18,48 cm² and M = 0,204 MN.m.
 Using n = 15, σ_s = 344 MPa < 400 MPa is obtained.
 Using n = 5,9, σ_c = 15,6 MPa < 21 MPa is obtained.
- The design example in the section at mid-span between the steel main girders gives d = 0,26 m, A_s = 28,87 cm² and M = 0,184 MN.m. Using n = 15, σ_s = 287 MPa < 400 MPa is obtained. Using n = 5,9, σ_c = 20,0 MPa < 21 MPa is obtained.

Dissemination of information for training – Vienna, 4-6 October 2010

Crack control (SLS)

 According to EN1992-2, 7.3.1(105), Table 7.101N, the calculated crack width should not be greater than 0,3 mm under quasi permanent combination of actions, for reinforced concrete, whatever the exposure class.

Exposure Class	Reinforced members and prestressed members with unbonded tendons	Prestressed members with bonded tendons			
	Quasi-permanent load combination	Frequent load combination			
X0, XC1	0,3 ¹	0,2			
XC2, XC3, XC4		0,22			
XD1, XD2, XD3 XS1, XS2, XS3	0,3	Decompression			
 Note 1: For X0, XC1 exposure classes, crack width has no influence on durability and this limit is set to guarantee acceptable appearance. In the absence of appearance conditions this limit may be relaxed. Note 2: For these exposure classes, in addition, decompression should be checked under the quasi-permanent combination of loads. 					

Dissemination of information for training – Vienna, 4-6 October 2010

Crack control (SLS)

- In the design example, transverse bending is mainly caused by live loads, the bending moment under quasi-permanent combination is far lesser than the moment under characteristic combinations. It is the same for the tension in reinforcing steel. Therefore, ther is no problem with the control of cracking.
- The concrete stresses due to transverse bending under quasi permanent combination, are as follows:
- above the steel main girder:

M = -46 kNm/m $\sigma_c = \pm 1,7$ MPa

• at mid-span between the main girders:

M = 24 kNm/m $\sigma_c = \pm 1,5 \text{ MPa}$

• Since $\sigma_c > -f_{ctm}$, the sections are assumed to be uncracked (EN1992-1-1, 7.1(2)) and there is no need to check the crack openings. A minimum amount of bonded reinforcement is required in areas where tension is expected (EN1992-1-1, 7.3.2)

Dissemination of information for training - Vienna, 4-6 October 2010

Crack control (SLS)

Minimum reinforcement areas (EN1992-1-1 and EN1992-2, 7.3.2) (1)P If crack control is required, a minimum amount of bonded reinforcement is required to control cracking in areas where tension is expected. The amount may be estimated from equilibrium between the tensile force in concrete just before cracking and the tensile force in reinforcement at yielding or at a lower stress if necessary to limit the crack width

$$A_{\rm s,min}\sigma_{\rm s} = k_{\rm c} \ k \ f_{\rm ct,eff} \ A_{\rm ct} \tag{7.1}$$

- $A_{s,min}$ is the minimum area of reinforcing steel within the tensile zone... A_{ct} is the area of concrete within tensile zone...
- σ_s is the absolute value of the maximum stress permitted in the reinforcement immediately after formation of the crack...
- $f_{ct,eff}$ is the mean value of the tensile strength of the concrete effective at the time when the cracks may first be expected to occur: $f_{ct,eff} = f_{ctm}$ or lower,...
- k is the coefficient which allows for the effect of non-uniform self-equilibrating • which lead to a reduction of restraint forces...
- $k_{\rm c}$ is a coefficient which takes account of the stress distribution within the section ٠ immediately prior to cracking and of the change of the lever arm...

Dissemination of information for training – Vienna, 4-6 October 2010

Crack control (SLS) - design example

• Minimum reinforcement areas (EN1992-1-1 and EN1992-2, 7.3.2)

$$A_{\rm s,min}\sigma_{\rm s} = k_{\rm c} \ k \ f_{\rm ct,eff} \ A_{\rm ct} \tag{7.1}$$

For the design example:

- $A_{ct} = bh/2$ (b = 1 m; h = 0,40 m above main girder and 0,32 m at mid-span)
- $\sigma_s = f_{yk}$ (lower value only when control of cracking is ensured by limiting bar size or spacing according to 7.3.3)
- **f**_{ct,eff} = 3,2 MPa (= f_{ctm})
- k = 0.65 (flanges with width ≥ 800 mm)
- $k_c = 0.4$ (expression 7.2 with σ_c mean stress of the concrete = 0)

The following areas of reinforcement are obtained:

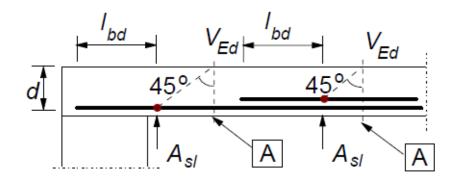
- $A_{s,min} = 5,12 \text{ cm}^2/\text{m}$ on top face of the slab above the main girder
- $A_{s,min} = 4,10 \text{ cm}^2/\text{m}$ on bottom face of the slab at mid-span

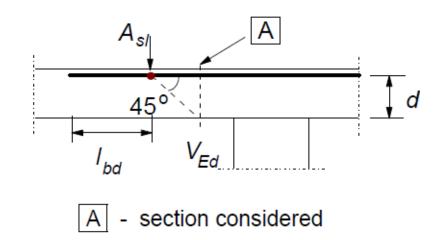
Dissemination of information for training – Vienna, 4-6 October 2010

Resistance to vertical shear force - ULS

- The shear force calculations are not detailed. The maximum shear force at ULS is obtained in the section located above the steel main girder by applying the traffic load model LM1 between the two steel main girders. This gives $V_{\rm Ed}$ = 235 kN to be resisted by a 1-m-wide slab strip.
- The resistance to vertical shear without specific shear reinforcement is obtained by using the formula (6.2a) in EN1992-2:

 $V_{\text{Rd,c}} = b_W d \{ k_1 \sigma_{\text{cp}} + \max [C_{\text{Rd,c}} k (100 \rho_I f_{\text{ck}})^{1/3}; v_{\text{min}}] \}$ (2) where:


 f_{ck} is given in MPa $k = 1 + \sqrt{\frac{200}{d}} \le 2,0$ with *d* in mm $\rho_{|} = \frac{A_{s|}}{b_{w}d} \le 0,02$


Dissemination of information for training – Vienna, 4-6 October 2010

24

Resistance to vertical shear force - ULS

• A_{sl} is the area of reinforcement in tension (see Figure 6.3 in EN1992-1-1 for the provisions that have to be fulfilled by this reinforcement). For the design example, A_{sl} represents the transverse reinforcing steel bars of the upper layer in the studied section above the steel main girder. b_w is the smallest width of the studied section in the tensile area. In the studied slab $b_w = 1000$ mm in order to obtain a resistance $V_{Rd,c}$ to vertical shear for a 1-m-wide slab strip (rectangular section).

Dissemination of information for training – Vienna, 4-6 October 2010

25

Resistance to vertical shear force - ULS

• $\sigma_{cp} = \frac{N_{Ed}}{A_c} \le 0.2 f_{cd}$ in MPa. This stress is equal to zero

where there is no normal force (which is the case in the transverse slab direction in the example).

• The values of $C_{\text{Rd},c}$ and k_1 can be given by the National Annex to EN1992-2. The recommended ones are used:

$$C_{\text{Rd,c}} = \frac{0.18}{Y_{\text{C}}} = 0.12$$

 $k_1 = 0.15$

•
$$v_{\rm min} = 0,035.k^{3/2}f_{\rm ck}^{1/2}$$

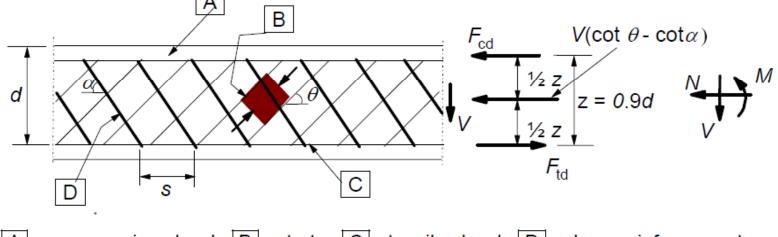
Dissemination of information for training – Vienna, 4-6 October 2010

Resistance to vertical shear force – ULS Design example

 The design example in the studied slab section above the steel main girder gives successively:

$$k = 1 + \sqrt{\frac{200}{360}} = 1,75$$
; $A_{sl} = 1848$ mm²; $b_w = 1000$ mm
1848

$$\rho_{\rm l} = \frac{1040}{1000 \times 360} = 0,51\%$$


•
$$C_{\text{Rd,c}} k(100 \rho_{\text{l}} f_{\text{ck}})^{1/3} = 0,55 \text{ MPa}$$

 $\sigma_{\text{cp}} = 0$

• $v_{min} = 0.035 \times 1.75^{3/2} \times 35^{1/2} = 0.48$ MPa < 0.55 Mpa The shear resistance without shear reinforcement is: $V_{Rd,c} = C_{Rd,c} k (100 \rho_l f_{ck})^{1/3} b_w d = 198$ kN / m < $V_{Ed} = 235$ kN / m

Dissemination of information for training – Vienna, 4-6 October 2010

Resistance to vertical shear force – ULS

 According to EN1992, shear reinforcement is needed in the slab, near the main girders. With vertical shear reinforcement, the shear design is based on a truss model (EN1992-1-1 and 1992-2, 6.2.3, fig. 6.5):

A - compression chord, B - struts, C - tensile chord, D - shear reinforcement

Dissemination of information for training –

Resistance to vertical shear force – ULS

For vertical reinforcement (α = 90°), the resistance V_{Rd} is the smaller value of:

$$V_{\text{Rd,s}} = (A_{\text{sw}}/s).z.f_{\text{ywd}}.\cot\theta \quad \text{and} \\ V_{\text{Rd,max}} = \alpha_{\text{cw}} b_{\text{w}} z v_1 f_{\text{cd}}/(\cot\theta + \tan\theta)$$

where:

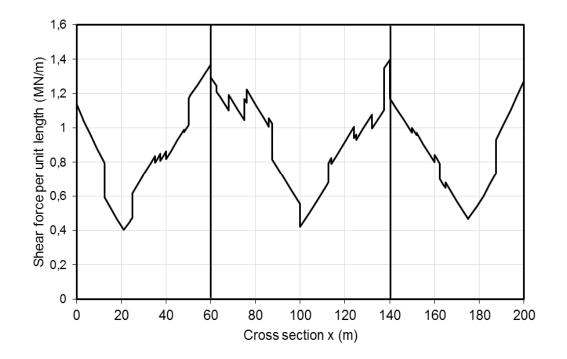
- z is the inner lever arm (z = 0.9d may normally be used for members without axial force)
- θ is the angle of the compression strut with the horizontal, must be chosen such as $1 \leq \cot\theta \leq 2,5$
- A_{sw} is the cross-sectional area of the shear reinforcement
 s is the spacing of the stirrups

- f_{ywd} is the design yield strength of the shear reinforcement v_1 is a strength reduction factor for concrete cracked in shear, the recommended value of v_1 is $v = 0.6(1-f_{ck}/250)$
- a_{cw} is a coefficient taking account of the interaction of the stress in the compression chord and any applied axial compressive stress; the recommended value of α_{cw} is 1 for non prestressed members.

Dissemination of information for training – Vienna, 4-6 October 2010

Resistance to vertical shear force – ULS

• In the design example, choosing $\cot\theta = 2,5$, with a shear reinforcement area $A_{sw}/s = 6,8$ cm²/m for a 1-m-wide slab strip:

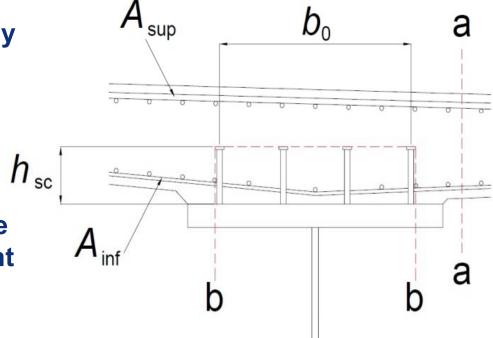

 $V_{\text{Rd,s}} = 0,00068 \times (0,9 \times 0,36) \times 435 \times 2,5 = 240 \text{ kN/m} > V_{\text{Ed}}$

 $V_{\text{Rd,max}} = 1,0x1,0x(0,9x0,36)x0,6x(1 - 35/250)x35/(2,5+0,4)$ = 2,02 MN/m > V_{ed}

Dissemination of information for training – Vienna, 4-6 October 2010

Resistance to longitudinal shear stress - ULS

The longitudinal shear force per unit length at the steel/concrete interface is determined by an elastic analysis at characteristic SLS and at ULS. The number of shear connectors is designed thereof, to resist to this shear force per unit length and thus to ensure the longitudinal composite behaviour of the deck.

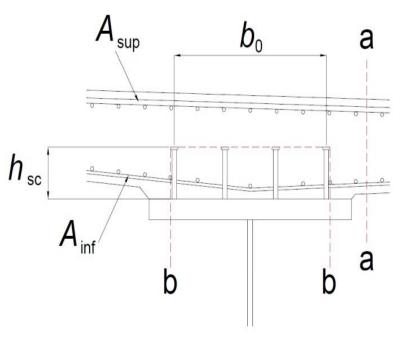


Dissemination of information for training – Vienna, 4-6 October 2010

Resistance to longitudinal shear stress - ULS

At ULS this longitudinal shear stress should also be resisted to for any potential surface of longitudinal shear failure within the slab. Two potential surfaces of shear failure are defined in EN1994-2, 6.6.6.1, fig 6.15:

 surface a-a holing only once by the two transverse reinforcement layers, As = Asup + Ainf there are 2 surfaces a-a.


 surface b-b holing twice by the lower transverse reinforcement layers, As = 2.Ainf

Dissemination of information for training – Vienna, 4-6 October 2010

Resistance to longitudinal shear stress - ULS

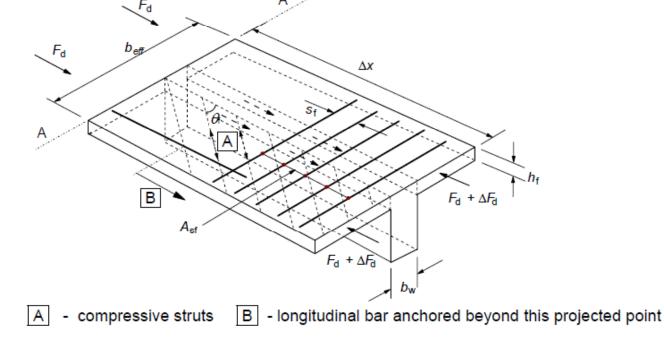
The maximum longitudinal shear force per unit length resisted to by the shear connectors is equal to 1,4 MN/m. This value is used here for verifying shear failure within the slab. The shear force and on each potential failure surface is as follows

- surface a-a, on the cantilever side : 0,59 MN/m
- surface a-a, on the central slab side : 0,81 MN/m
- surface b-b : 1,4 MN/m

Dissemination of information for training – Vienna, 4-6 October 2010

Resistance to longitudinal shear stress - ULS

Failure surfaces a-a:


• The shear resistance is determined according to EN1994-2, 6.6.6.2(2), which refers to EN1992-1-1, 6.2.4, fig. 6.7 (see below), the resulting shear stress is : $v_{\rm Ed} = \Delta F_{\rm d}/(h_{\rm f} \cdot \Delta x)$

where:

 $h_{\rm f}$ is the thickness of flange at the junctions

 Δx is the length under consideration, see Figure 6.7

 ΔF_d is the change of the normal force in the flange over the length Δx .

33

Dissemination of information for training – Vienna, 4-6 October 2010

Resistance to longitudinal shear stress - ULS

- The calculation is made only for the surface a-a on the central slab side, where the longitudinal shear is higher than on cantilever side. Shear stress: v_{Ed} = △F_d/(h_f · △x) = 0,81/0,40 = 2,03 MPa (h_f = 0,40 m)
 Two different verifications should be carried out:
- the transverse reinforcement should be designed to resist to the tensile force:

 $v_{\text{Ed}}h_{\text{f}}\tan\theta_{\text{f}} \leq \frac{A_{\text{S}}}{s}f_{\text{yd}}$

where s is the spacing between the transverse reinforcing steel bars and A_s is the corresponding area within the 1-m-wide slab strip.

the crushing should be prevented in the concrete compressive struts:

 $v_{\text{Ed}} \leq f_{\text{cd}} \sin \theta_{\text{f}} \cos \theta_{\text{f}}$ with $v = 0,6\left(1 - \frac{f_{\text{ck}}}{250}\right)$ and f_{ck} in MPa (strength reduction factor for the concrete cracked in shear)

Dissemination of information for training – Vienna, 4-6 October 2010

Resistance to longitudinal shear stress - ULS

As the concrete slab is in tension in the longitudinal direction of the deck, the angle θ_f for the concrete compressive strut should be limited to cotan $\theta_f = 1,25$ i.e. $\theta_f = 38,65^\circ$.

 For the design example, above the steel main girder, A_s/s = 30,3 cm²/m. The previous criterion is thus verified:

$$A_{s}/s \ge \frac{v_{Ed} h_{f}}{f_{yd} \cot an \theta_{f}} = 0,81/(435x1,25) = 14,9 \text{ cm}^{2}/m$$

• The second criterion is also verified for the failure surface a-a. $v_{Ed} = 2,03 \text{ MPa} \le v.f_{cd}.\sin\theta_{f}.\cos\theta_{f} = 6,02 \text{ MPa}.$

Dissemination of information for training – Vienna, 4-6 October 2010

Resistance to longitudinal shear stress - ULS

Failure in shear plane b-b

- The length of this shear surface is calculated by encompassing the studs as closely as possible within 3 straigth lines (see Figure 4(a)):
 h_f = 2h_{sc} + b₀ + \u03c6_{head} = 2x0,200 + 0,75 + 0,035 = 1,185 m.
- The shear stress for the surface b-b of shear failure is equal to:
 v_{Ed} = 1,4/1,185 = 1,18 Mpa

For the design example, the two previous criteria are justified:

 $A_s/s = 23,65 \text{ cm}^2/\text{m}$ (two layers of high bond bars with a 16 mm diameter and a spacing s = 170 mm)

A_S/s≥
$$\frac{v_{\rm Ed}h_{\rm f}}{f_{\rm sd}.{\rm cotan}~\theta_{\rm f}}$$
 = 1,4/(435x1,25) = 25,75 cm2/m
v_{Ed} = 1,18 MPa ≤ ν.f_{cd}.sinθ_f.cosθ_f = 6,02 MPa

Dissemination of information for training – Vienna, 4-6 October 2010

Interaction shear/transverse bending - ULS

- The traffic load models are such that they can be arranged on the pavement to provide a maximum longitudinal shear flow and a maximum transverse bending moment simultaneously. EN1992-2, 6.2.4 (105) sets the following rules to take account of this concomitance:
- the criterion for preventing the crushing in the compressive struts is verified with a height h_f reduced by the depth of the compressive zone considered in the transverse bending assessment (as this concrete is worn out under compression, it cannot simultaneously take up the shear stress);
- the total reinforcement area should be not less than $A_{\text{flex}} + A_{\text{shear}}/2$ where A_{flex} is the reinforcement area needed for the pure bending assessment and A_{shear} is the reinforcement area needed for the pure longitudinal shear flow.

Dissemination of information for training – Vienna, 4-6 October 2010

Interaction shear/transverse bending - ULS

Crushing in the compressive struts

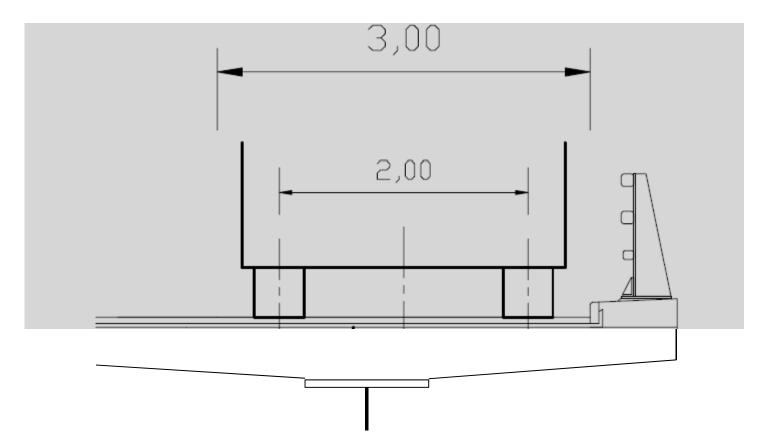
The compression in the struts is much lower than the limit. The reduction in $h_{\rm f}$ is not a problem therefore.

• shear plane a-a:

 $h_{\rm f,red} = h_{\rm f} - x_{\rm ULS} = 0,40-0,05 = 0,35 \text{ m}$ $v_{\rm Ed,red} = v_{\rm Ed}.h_{\rm f}/h_{\rm red} = 0,81/0,35 = 2,31 \text{ MPa} \le 6,02 \text{ MPa}$

 shear plane b-b: *h*_{f,red} = *h*_f - 2*x*_{ULS} = 1,185 - 2x0,.05 = 1,085 m *v*_{Ed,red} = *v*_{Ed}.*h*_f/*h*_{red} = 1,4/1,085 = 1,29 MPa ≤ 6,02 Mpa

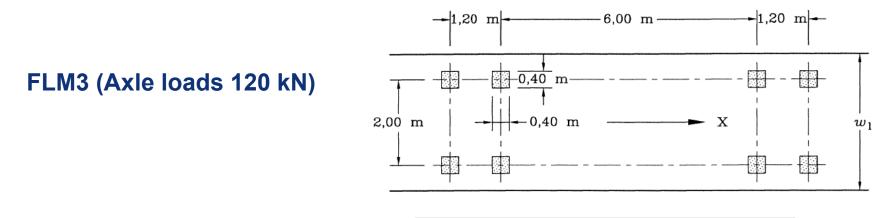
Total reinforcement area:


 $\begin{array}{l} A_{\rm flex} = 18,1 \ {\rm cm^2/m} \ {\rm required} \\ A_{\rm shear} = 14,9 \ {\rm cm^2/m} \ {\rm required} \\ A_{\rm shear} \ /2 + A_{\rm flex} = 25,6 \ {\rm cm^2/m} \\ A_{\rm s} = 30,3 \ {\rm cm^2/m} \ {\rm : the} \ {\rm criterion} \ {\rm is} \ {\rm saatisfied} \end{array}$

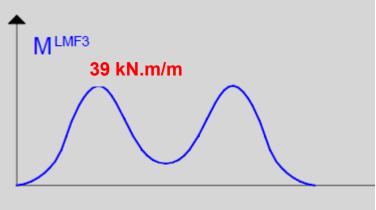
39

Dissemination of information for training – Vienna, 4-6 October 2010

ULS of fatigue – transverse bending


The slow lane is assumed to be close to the safety barrier and the the fatigue load is centered on this lane

Dissemination of information for training – Vienna, 4-6 October 2010


ULS of fatigue – transverse bending

Fatigue load model FLM3 is used. Verification are performed by the damage equivalent stress range method (EN1992-1-1, 6.8.5 and EN1992-2, Annex NN)

Variation of transverse bending moment above main steel girder during the passage of FLM 3

 $\Delta \sigma_{\rm s}$ (FLM3) = 63 Mpa

Dissemination of information for training - Vienna, 4-6 October 2010

ULS of fatigue – transverse bending

Damage equivalent stress range method

EN1992-1-1, 6.8.5:

(3) For reinforcing or prestressing steel and splicing devices adequate fatigue resistance should be assumed if the Expression (6.71) is satisfied:

$$\gamma_{\text{F,fat}} \cdot \Delta \sigma_{\text{S,equ}} \left(N^* \right) \le \frac{\Delta \sigma_{\text{Rsk}} \left(N^* \right)}{\gamma_{\text{s,fat}}}$$
(6.71)

where:

 $\Delta \sigma_{\text{Rsk}}(N^*)$ is the stress range at N^* cycles from the appropriate S-N curves given in Figure 6.30.

Note: See also Tables 6.3N and 6.4N.

 $\Delta \sigma_{S,equ}(N^*)$ is the damage equivalent stress range for different types of reinforcement and considering the number of loading cycles N^* . For building construction $\Delta \sigma_{S,equ}(N^*)$ may be approximated by $\Delta \sigma_{S,max}$.

 $\Delta \sigma_{S,max}$ is the maximum steel stress range under the relevant load combinations

Dissemination of information for training - Vienna, 4-6 October 2010

ULS of fatigue – transverse bending

Damage equivalent stress range method

$$\gamma_{\text{F,fat}} \cdot \Delta \sigma_{\text{S,equ}} \left(N^* \right) \leq \frac{\Delta \sigma_{\text{Rsk}} \left(N^* \right)}{\gamma_{\text{s,fat}}}$$

- $\gamma_{F,fat}$ is the partial factor for fatigue load (EN1992-1-1, 2.4.2.3). The recommended value is 1,0
- $\Delta \sigma_{Rsk} (N^*) = 162,5 \text{ MPa} (EN1992-1-1, table 6.3N)$
- $\gamma_{s,fat}$ is the partial factor for reinforcing steel (EN1992-1-1, 2.4.2.4). The recommended value is 1,15.

Dissemination of information for training – Vienna, 4-6 October 2010

ULS of fatigue – transverse bending

Annex NN - NN.2.1 (102)

 $\Delta \sigma_{\rm s,equ} = \Delta \sigma_{\rm s,Ec} \cdot \lambda_{\rm s}$

where

 $\Delta\sigma_{s,Ec} = \Delta\sigma_s(1,4.FLM3)$ (stress range due to 1,4 times FLM3, in the case of pure bending, it is equal to 1,4 $\Delta\sigma_s(FLM3)$. For a verification of fatigue on intermediate supports of continuous bridges, the axle loads of FLM3 are multiplied by 1,75

 $\lambda_{\rm s}$ is the damage coefficient.

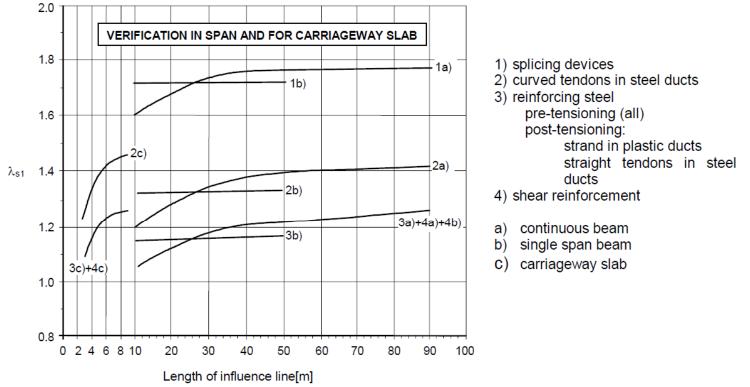
$$\lambda_{s} = \varphi_{fat} \cdot \lambda_{s,1} \cdot \lambda_{s,2} \cdot \lambda_{s,3} \cdot \lambda_{s,4}$$

where ϕ_{fat} is a dynamic magnification factor

 $\lambda_{\rm s,1}$ takes account of the type of member and the length of the influence line or surface

 $\lambda_{s,2}$ takes account of the volume of traffic

 $\lambda_{s,3}$ takes account of the design working life


 $\lambda_{s,4}$ takes account of the number of loaded lanes

Dissemination of information for training - Vienna, 4-6 October 2010

ULS of fatigue – transverse bending

Annex NN - NN.2.1 (104)

 $\lambda_{s,1}$ is given by figure NN.2, curve 3c). In the design example, the length of the influence line is 2,5 m. Therefore $\lambda_{s,1} \approx 1,1$

Dissemination of information for training – Vienna, 4-6 October 2010

ULS of fatigue – transverse bending

Annex NN – NN.2.1 (105)

$$\lambda_{s,2} = \overline{Q}_{\sqrt{k_2}}^{k_2} \frac{N_{obs}}{2.0}$$

where:

- N_{obs} number of lorries per year according to EN 1991-2, Table 4.5
- k₂ slope of the appropriate S-N-Line to be taken from Tables 6.3N and 6.4N of EN 1992-1-1
- \overline{Q} factor for traffic type according to Table NN.1

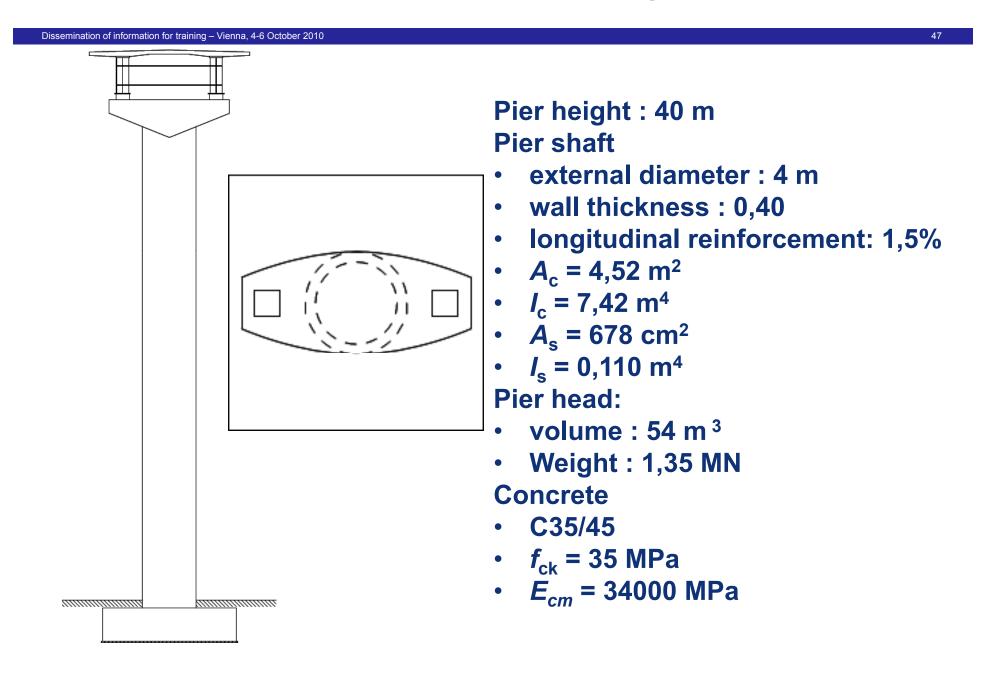
Table NN.1 – Factors for traffic type

$\overline{\mathcal{Q}}$ - factor for	Traffic type (see EN 1991-2 Table 4.7)			
	Long distance	Medium distance	Local traffic	
k ₂ = 5	1.0	0.90	0.73	
k ₂ = 7	1.0	0.92	0.78	
k ₂ = 9	1.0	0.94	0.82	

k₂ = 9 (table 6.3 N); N_{obs} = 0,5.10⁶ (EN1991-2, table 4.5); Q = 0,94 $\lambda_{s,2} = 0,81$

(NN.103)

Dissemination of information for training – Vienna, 4-6 October 2010


ULS of fatigue – transverse bending

Annex NN - NN.2.1 (106) and (107)

$$\begin{split} \lambda_{s,3} &= 1 \text{ (design working life = 100 years)} \\ \lambda_{s,4} &= 1 \text{ (different from one if more than one lane are loaded)} \\ \phi_{fat} &= 1,0 \text{ except for the areas close to the expansion joints} \\ \text{where } \phi_{fat} &= 1,3 \end{split}$$

It comes: $\lambda_{s} = 0.89$ (1,16 near the expansion joints) $\Delta \sigma_{s,Ec} = 1.4x63 = 88$ MPa

 $\Delta \sigma_{s,eq} = 78 \text{ MPa} (102 \text{ near the expansion joints})$ $\Delta \sigma_{Rsk} / \gamma_{s,fat} = 162,5/1,15 = 141 \text{ MPa} > 102 \text{ MPa}$ <u>The resistance of reinforcement to fatigue under transverse bending is</u> <u>verified</u>

Dissemination of information for training – Vienna, 4-6 October 2010

48

Forces and moments on top of the piers are calculated assuming that the inertia of the piers is equal to 1/3 of the uncracked inertia. Two ULS combinations are taken into account:

- Comb 1: 1,35G + 1,35(UDL + TS) + 1,5(0,6F_{wkT}) (transverse direction)
- Comb 2: 1,35G + 1,35(0,4UDL+ 0,75TS + braking) + 1,5(0,6T_k) (longitudinal direction)

	<i>F</i> _z (vertical)	<i>F</i> _y (trans.)	<i>F</i> _x (long.)	<i>M</i> _x (trans.)
G	14,12 MN	0	0	0
UDL	3,51 MN	0	0	8,44 MN.m
TS	1,21 MN	0	0	2,42 MN.m
Braking	0	0	0,45 MN	0
F_{wkT} (wind on trafic)	0	0,036 MN	0	0,11 MN.m
Τ _κ	0	0	0,06 MN	0
Comb 1	25,43 MN	0,032 MN	0	14,76 MN.m
Comb 2	22,18 MN	0	0,66 MN	7,01 MN.m

Dissemination of information for training - Vienna, 4-6 October 2010

49

The second order effects are analysed by a simplified method: EN1992-1-1, 5.8.7 - method based on nominal stiffness. The analysis is performed in longitudinal direction.

Geometric imperfection (EN1992-1-1, 5.2(5):

$$\theta_{\rm I} = \theta_0 \alpha_{\rm h}$$

where

 $\theta_0 = 1/200$ (recommended value) $\alpha_h = 2/I^{1/2}$; $2/3 \le \alpha_h \le 1$ *I* is the height of the pier = 40 m

 $\theta_{\rm I}$ = 0,0016 resulting in a moment under permanent combination $M_{\rm 0Eqp}$ = 1,12 MN.m at the base of the pier

Dissemination of information for training - Vienna, 4-6 October 2010

First order moment at the base of the pier:

• $M_{0Ed} = 1,35 M_{0Ed} + 1,35 F_z (0,4UDL + 0,75TS).I.\theta_1$ + 1,35 F_x (braking).I + 1,5(0,6 F_x (T_k).I

 $M_{0\rm Ed}$ = 28,2 MN.m

• Effective creep ratio (EN 1992-1-1, 5.8.4 (2)):

$$\varphi_{\text{ef}} = \varphi_{(\infty, \text{t0})} \cdot M_{0\text{Eqp}} / M_{0\text{Ed}}$$

(5.19)

where:

 $\varphi_{(\infty,t0)}$ is the final creep coefficient according to 3.1.4

 M_{0Eqp} is the first order bending moment in quasi-permanent load combination (SLS)

 M_{0Ed} is the first order bending moment in design load combination (ULS)

 $\varphi_{\rm ef} = 2.(1, 12/28, 2) = 0,08$

Dissemination of information for training - Vienna, 4-6 October 2010

Nominal stiffness (EN1992-1-1, 5.8.7.2 (1)

 $EI = K_{\rm c}E_{\rm cd}I_{\rm c} + K_{\rm s}E_{\rm s}I_{\rm s}$

(5.21)

51

where:

- E_{cd} is the design value of the modulus of elasticity of concrete, see 5.8.6 (3)
- *I*_c is the moment of inertia of concrete cross section
- $E_{\rm s}$ is the design value of the modulus of elasticity of reinforcement, 5.8.6 (3)
- *I*_s is the second moment of area of reinforcement, about the centre of area of the concrete
- K_c is a factor for effects of cracking, creep etc, see 5.8.7.2 (2) or (3)
- $K_{\rm s}$ is a factor for contribution of reinforcement, see 5.8.7.2 (2) or (3)

 $E_{cd} = E_{cm} / \gamma_{cE} = 34000 / 1,2 = 28300 \text{ MPa}$ $I_c = 7,42 \text{ m}^4$ $E_s = 200000 \text{ MPa}$ $I_s = 0,110 \text{ m}^4$ $K_s = 1$

Dissemination of information for training - Vienna, 4-6 October 2010

Nominal stiffness (EN1992-1-1, 5.8.7.2 (1)

 $K_{\rm c} = k_1 k_2 / (1 + \varphi_{\rm ef})$

where:

 ρ is the geometric reinforcement ratio, A_s/A_c

 $A_{\rm s}$ is the total area of reinforcement

 $A_{\rm c}$ is the area of concrete section

 $\varphi_{\rm ef}$ is the effective creep ratio, see 5.8.4

- k_1 is a factor which depends on concrete strength class, Expression (5.23)
- k_2 is a factor which depends on axial force and slenderness, Expression (5.24)

$$k_1 = \sqrt{f_{ck} / 20}$$
 (MPa)
 $k_2 = n \cdot \frac{\lambda}{170} \le 0,20$

where:

n is the relative axial force, $N_{\rm Ed} / (A_{\rm c} f_{\rm cd})$

 λ is the slenderness ratio, see 5.8.3

Dissemination of information for training - Vienna, 4-6 October 2010

 $\rho = 0,015$ $k_1 = 1,32$ $N_{Ed} = 22,18$ n = 22,18/(4,52.19,8) = 0,25 $\lambda = I_0/i$; $I_0 = 1,43.I = 57,20$ m (taking into account the rigidity of the second pier) ; $i = (I_c/A_c)^{0.5} = 1,28$ m $\lambda = 45$ $k_2 = 0,25.(45/170) = 0,066$ $K_c = 1,32x0,066/1,08 = 0,081$

 $EI = 39200 \text{ MN} \cdot \text{m}^2 (= Ei_{\text{uncracked}}/6)$

Dissemination of information for training – Vienna, 4-6 October 2010

.Moment magnification factor (EN1992-1-1, 5.8.7.3)

(1) The total design moment, including second order moment, may be expressed as a magnification of the bending moments resulting from a linear analysis, namely:

$$M_{\rm Ed} = M_{\rm 0Ed} \left[1 + \frac{\beta}{(N_{\rm B} / N_{\rm Ed}) - 1} \right]$$
(5.28)

where:

 M_{0Ed} is the first order moment; see also 5.8.8.2 (2)

- β is a factor which depends on distribution of 1st and 2nd order moments, see 5.8.7.3 (2)-(3)
- *N*_{Ed} is the design value of axial load
- *N_B* is the buckling load based on nominal stiffness

(2) For isolated members with constant cross section and axial load, the second order moment may normally be assumed to have a sine-shaped distribution. Then

$$\beta = \pi^2 / c_0 \tag{5.29}$$

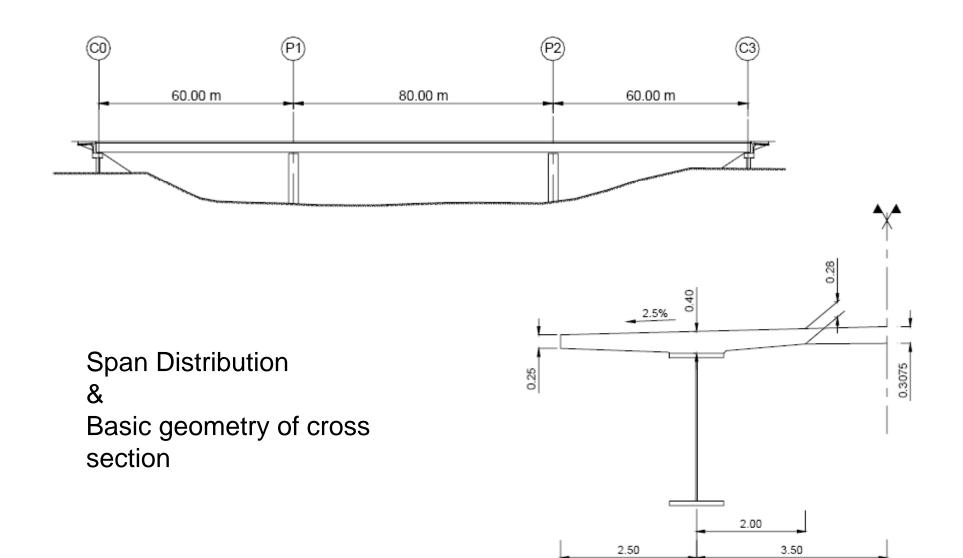
Dissemination of information for training - Vienna, 4-6 October 2010

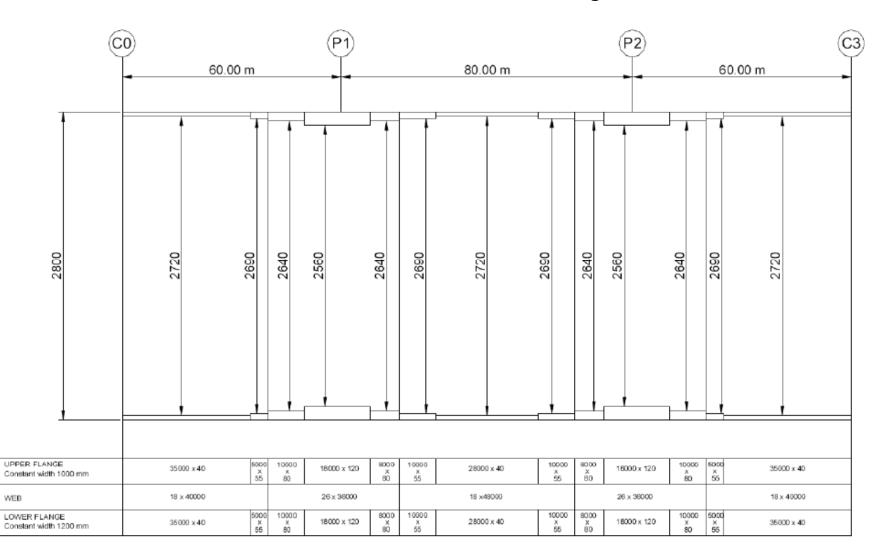
55

Moment magnification factor (EN1992-1-1, 5.8.7.3)

 $M_{0Ed} = 28,2 \text{ MN.m}$ $\beta = 0,85 \ (c_0 = 12)$ $N_{B} = \pi^2 E I / I_0^2 = 118 \text{ MN}$ $N_{Ed} = 26 \text{ MN}$ (mean value on the height of the pier)

 $M_{\rm Ed}$ = 1,23 $M_{\rm 0Ed}$ = 33,3 MN.m


Thank you for your kind attention


Prof. Ing. Giuseppe Mancini Ing. Gabriele Bertagnoli Politecnico di Torino

Dissemination of information for training - Vienna, 4-6 October 2010

Dissemination of information for training – Vienna, 4-6 October 2010

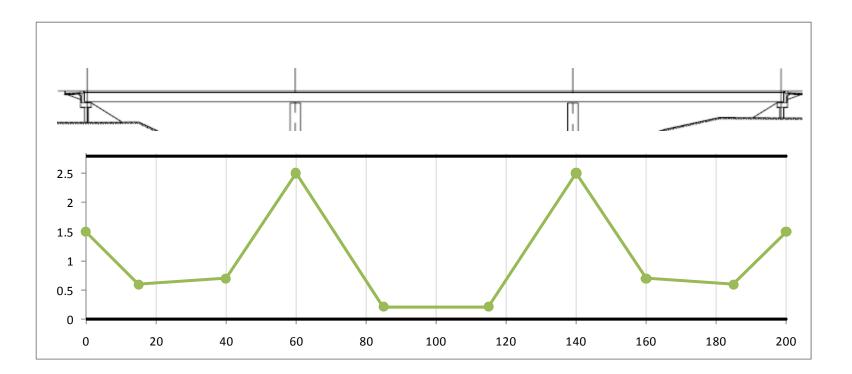
Structural steel distribution for main girder

Dissemination of information for training – Vienna, 4-6 October 2010

The not prestressed original solution has been compared with 4 different solutions with external prestressing.

Comparison has been done taking into account only:

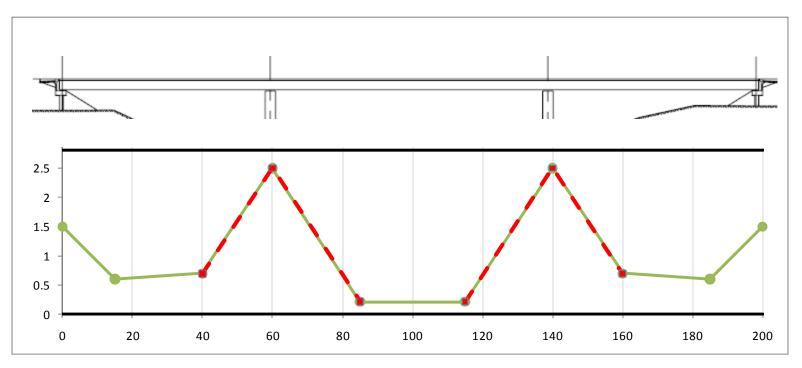
- 1. SLU bending and axial force verification during construction phases and in service
 - 2. SLU Fatigue verification
 - 3. SLS crack control


Goals of the work:

- 1. Reduction of steel girder
- 2. Reduction of slab longitudinal ordinary steel
 - 3. Avoiding cracks in the upper slab

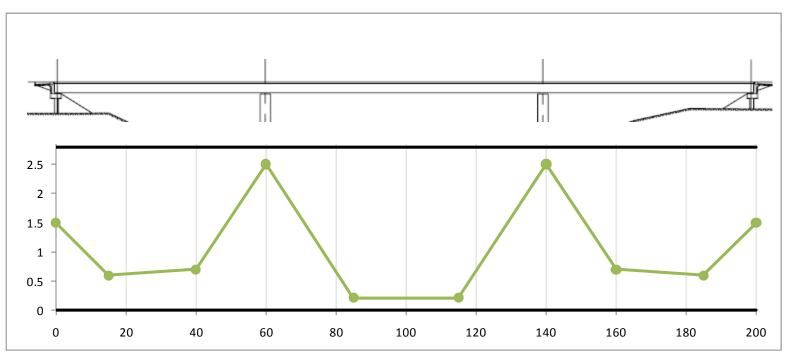
Dissemination of information for training – Vienna, 4-6 October 2010

 1^{st} prestressing layout $4x22 \phi 0.6$ " strand tendons on green layout


100% prestressing applied to steel girder

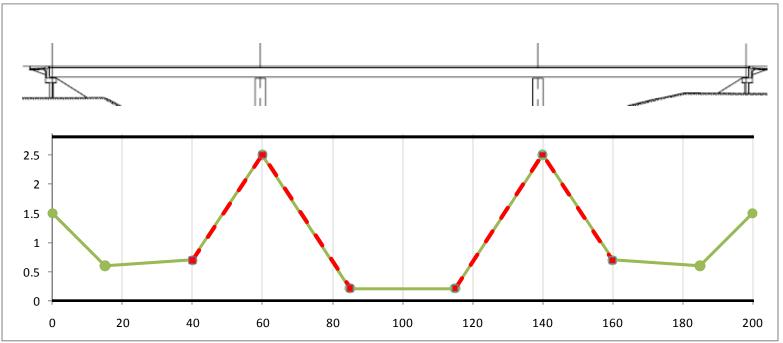
Dissemination of information for training – Vienna, 4-6 October 2010

2nd prestressing layout 2x22 φ0.6" strand tendons on green layout 2x22 φ0.6" strand tendons red dashed layout

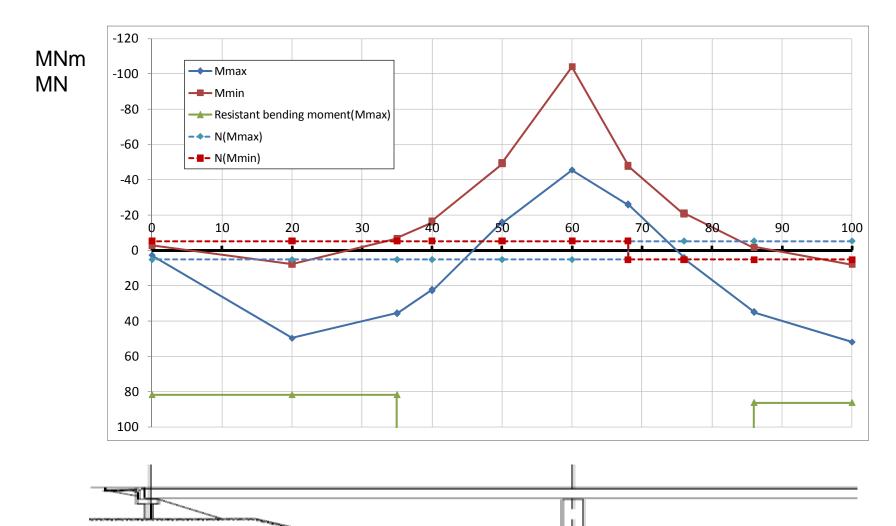

100% prestressing applied to steel girder

Dissemination of information for training - Vienna, 4-6 October 2010

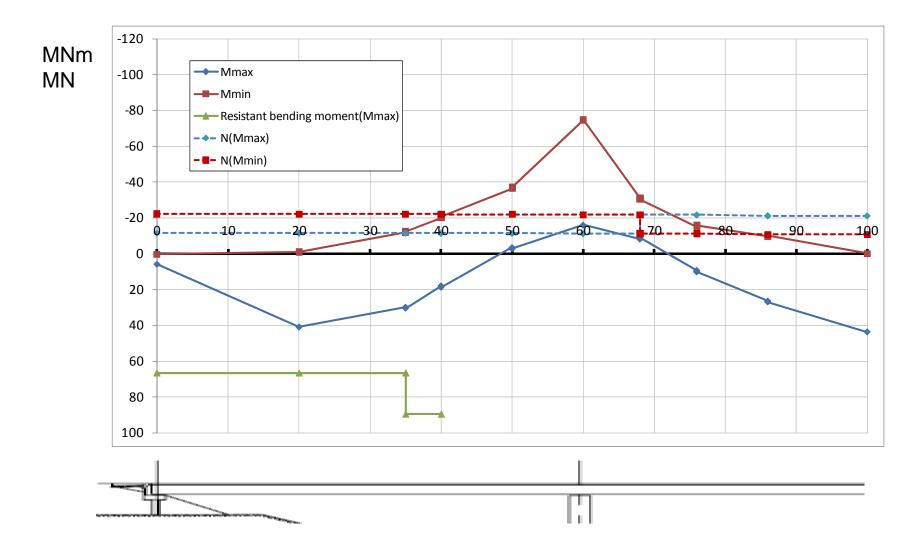
 3^{rd} prestressing layout $4x22 \phi 0.6$ " strand tendons on green layout

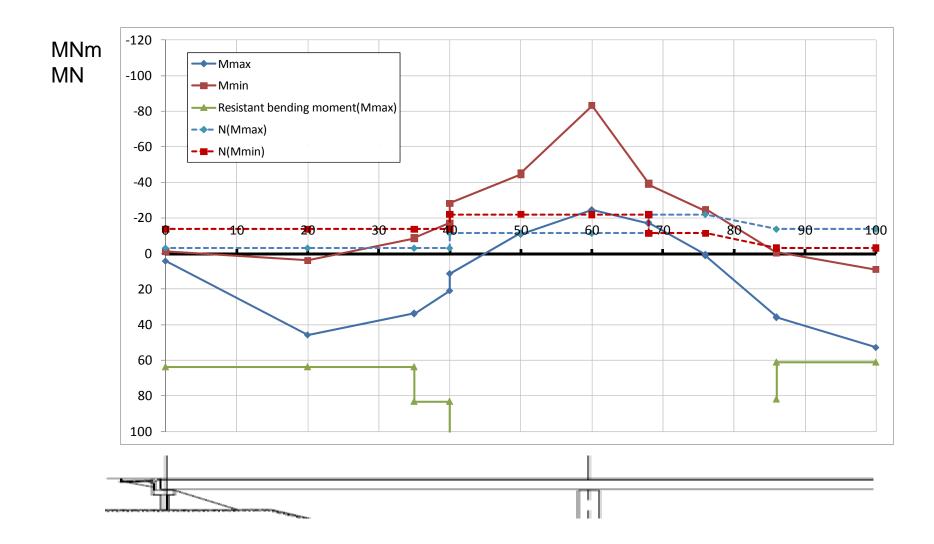

50% prestressing applied to steel girder + 50% prestressing applied to steel composite section

Dissemination of information for training - Vienna, 4-6 October 2010

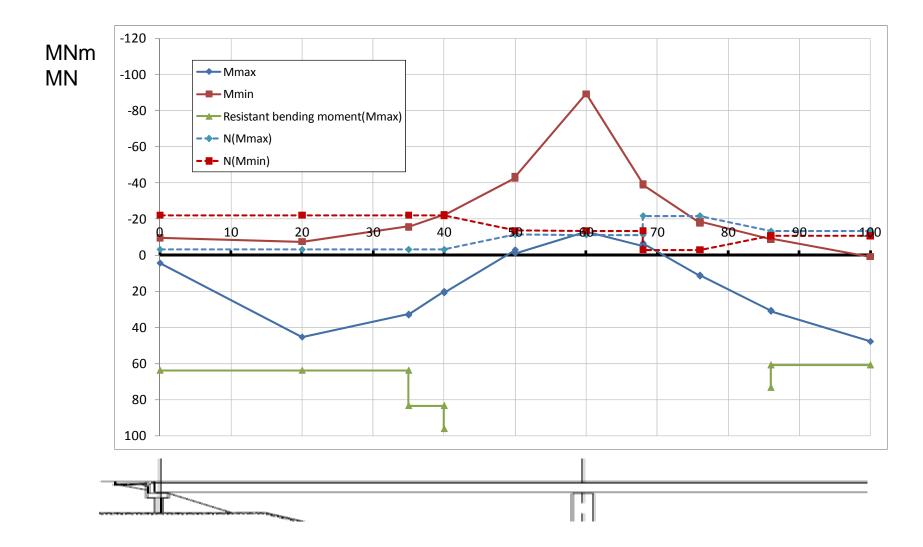

4th prestressing layout 2x22 φ0.6" strand tendons on green layout 2x22 φ0.6" strand tendons red dashed layout

50% prestressing applied to steel girder + 50% prestressing applied to composite section

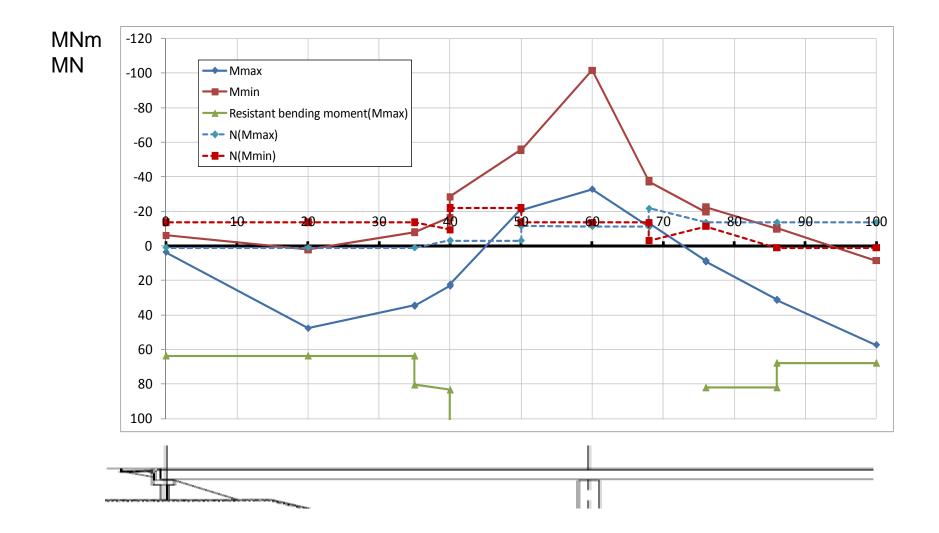

Dissemination of information for training - Vienna, 4-6 October 2010


Dissemination of information for training – Vienna, 4-6 October 2010

SLU internal actions with 1st prestressing layout at t₀


Dissemination of information for training - Vienna, 4-6 October 2010

SLU actions with 2nd prestressing layout at t_o


Dissemination of information for training - Vienna, 4-6 October 2010

SLU internal actions with 3rd prestressing layout at t₀

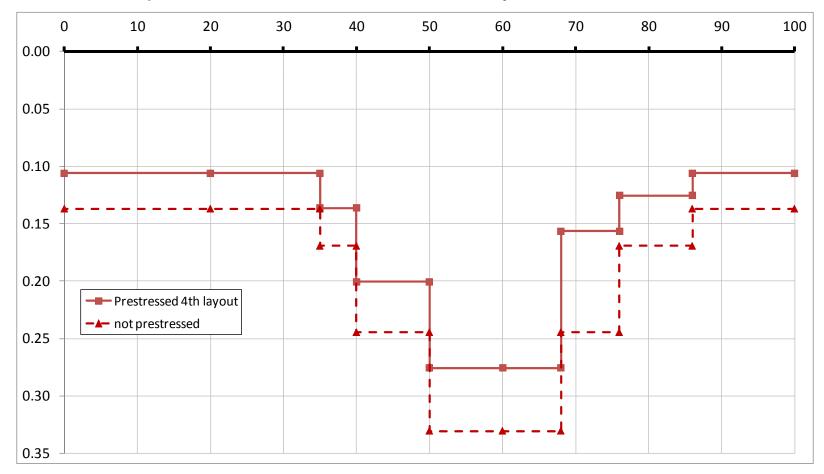
Dissemination of information for training - Vienna, 4-6 October 2010

SLU internal actions with 4th prestressing layout at t₀

Dissemination of information for training - Vienna, 4-6 October 2010

Conclusions The following quantities have been obtained

Quantities		No	Prestressing layout			
		prestr.	1	2	3	4
Girder steel	[kg/m ²]	256	202	194	190	201
Prestressing steel	[kg/m ²]	0	16.0	11.6	16.0	11.6
Slab longitudinal ordinary						
reinforcement	[kg/m ²]	51	51	51	13.1	13.1


Top slab in SLS frequent	[status]	cracked	cracked	cracked	Compres-	Compres-
combination					sed	sed

$$A_{\rm s,min} = 0,26 \frac{f_{\rm ctm}}{f_{\rm vk}} b_{\rm t} d$$

but not less than $0,0013b_td$

Dissemination of information for training – Vienna, 4-6 October 2010

Conclusions Steel cross section [m²]: comparison between not prestressed solution and 4th layout solution

Dissemination of information for training – Vienna, 4-6 October 2010

Thank you for the kind attention