ELABORATION OF MAPS FOR CLIMATIC AND SEISMIC ACTIONS FOR STRUCTURAL DESIGN IN THE BALKAN REGION

27-28 October 2015, Zagreb

Assessment and Retrofitting of Existing Structures

Ahmet Yakut Middle East Technical University

Outline

- Seismic Performance Assessment Procedures in Turkey
- Applications in Turkey
- Rehabilitation techniques
- Examples/Applications of common rehabilitation methods

ELABORATION OF MAPS FOR CLIMATIC AND SEISMIC ACTIONS FOR STRUCTURAL DESIGN IN THE BALKAN REGION

Seismic Performance Assessment

Objective

To determine seismic performance of buildings under a likely/expected earthquake

ELABORATION OF MAPS FOR CLIMATIC AND SEISMIC ACTIONS FOR STRUCTURAL DESIGN IN THE BALKAN REGION

Seismic Assessment Procedures

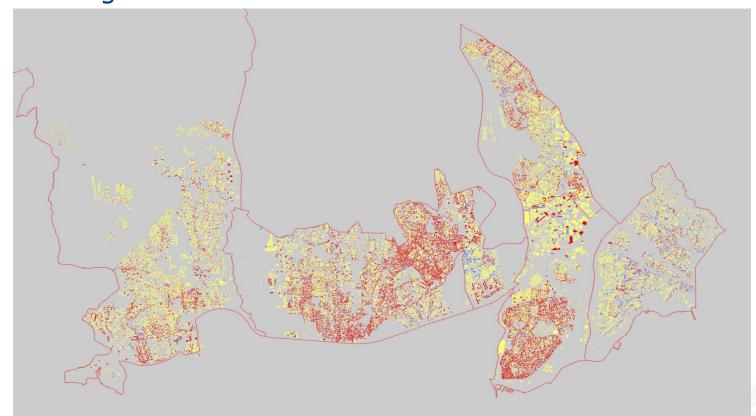
- Street Survey-Walk-down evaluation
- Preliminary investigation
- Detailed assessment

ELABORATION OF MAPS FOR CLIMATIC AND SEISMIC ACTIONS FOR STRUCTURAL DESIGN IN THE BALKAN REGION

Walk-down Survey (ATC-21, FEMA310, METU)

- To identify/rank highly vulnerable buildings
 - No entry to the building
 - Number of stories
 - Vertical and plan irregularities
 - Location
 - Age
 - Quality of material and workmanship
 - Structural system

ELABORATION OF MAPS FOR CLIMATIC AND SEISMIC ACTIONS FOR STRUCTURAL DESIGN IN THE BALKAN REGION


Parameters

- Number of stories (1-7)
- Soft story (no/yes)
- Apparent quality (good-moderate-poor)
- Short columns (no/yes)
- Heavy overhangs (no/yes)
- Pounding effect (no/yes)
- Topographic effects (no/yes)
- Local soil conditions and ground motion intensity
- *PGV Zone I : 60<PGV<80 cm/s*
- PGV Zone II : 40<PGV<60 cm/s
- PGV Zone III : 20<PGV<40 cm/s

ELABORATION OF MAPS FOR CLIMATIC AND SEISMIC ACTIONS FOR STRUCTURAL DESIGN IN THE BALKAN REGION

Application to six districts in İstanbul High risk

ELABORATION OF MAPS FOR CLIMATIC AND SEISMIC ACTIONS FOR STRUCTURAL DESIGN IN THE BALKAN REGION

Preliminary Evaluation (FEMA 310, Japanese Procedure, METU)

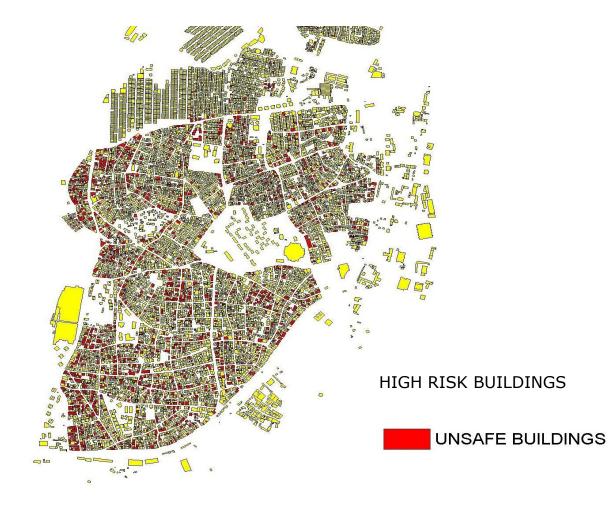
- To classify high risk buildings
 - Requires entry to the building and review of drawings
 - Data collected from street survey
 - Size, location and orientation of columns
 - Material quality assessment

ELABORATION OF MAPS FOR CLIMATIC AND SEISMIC ACTIONS FOR STRUCTURAL DESIGN IN THE BALKAN REGION

Parameters

- Number of stories (n)
- *Minimum normalized lateral stiffness index (mnlstfi)*
- Minimum normalized lateral strength index (mnlsi)
- Normalized redundancy score (nrs)
- Soft story index (ssi)
- Overhang ratio (or)

ELABORATION OF MAPS FOR CLIMATIC AND SEISMIC ACTIONS FOR STRUCTURAL DESIGN IN THE BALKAN REGION

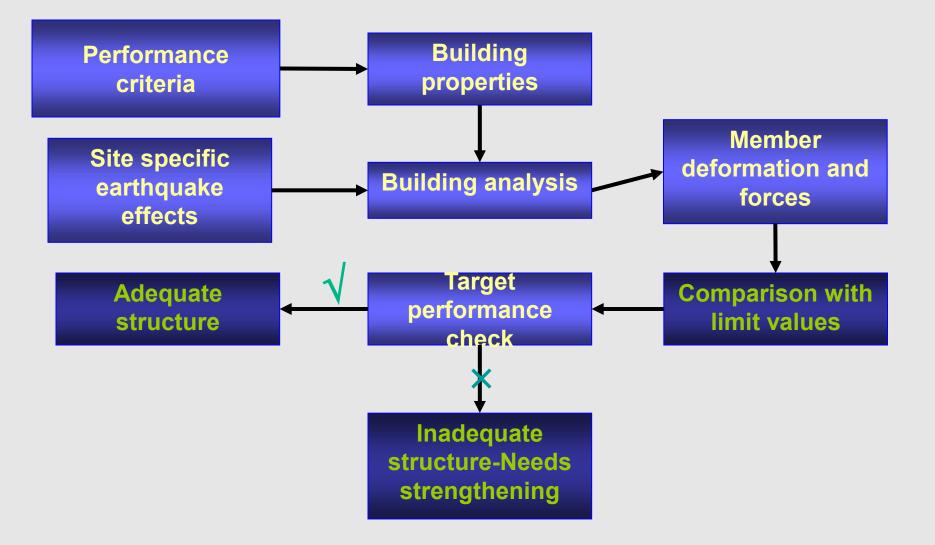


Application to Zeytinburnu, İstanbul

	Zeytinburnu	İstanbul	Ratio
Population	239,927	10,018,735	2.39
Area (Ha)	1,150	77,054	1.49
Number of buildings	16,030	700,942	2.28

Risk Classification

ELABORATION OF MAPS FOR CLIMATIC AND SEISMIC ACTIONS FOR STRUCTURAL DESIGN IN THE BALKAN REGION


Detailed Assessment

- Final decision regarding the safety and rehabilitation need of the building
 - Requires detailed evaluation of the building
 - Structural properties of all components
 - Architectural features
 - Detailed material properties-core samples etc.

ELABORATION OF MAPS FOR CLIMATIC AND SEISMIC ACTIONS FOR STRUCTURAL DESIGN IN THE BALKAN REGION

Detailed Assessment Procedures

Recent History in Turkey

<u></u>		
2775	European	
****	Commission	

Event	Date	Notes
Kocaeli Earthquake (7.5)	1999	17500 died, 17 billion dollars loss
Duzce Earthquake (7.2)	1999	782 died
Bingöl Earthquake (6.4)	2003	177 died
ISMEP	2006	Retrofit of School Buildings
Code Revisions	2007	Strengthening included
Elazığ Earthquake (6.0)	2010	51 died
Van Earthquake (7.2)	2011	650 died
Urban Renewal Law	2012	Law for Risk Mitigation
New Technical Guidelines	2013	Guidelines for Assesment

27-28 October 2015, Zagreb

ISMEP-Assessment and Rehabilitation of Public Buildings

- 1700 School buildings assessed
 - 506 rehabilitated
 - 148 demolished and rebuilt
- 12 Hospitals
 - 11 rehabilitated
 - 1 demolished and rebuilt
- 8 Dormitories
 - 7 rehabilitated
 - 1 demolished and rebuilt
- 39 Administrative buildings
 - 39 rehabilitated

ELABORATION OF MAPS FOR CLIMATIC AND SEISMIC ACTIONS FOR STRUCTURAL DESIGN IN THE BALKAN REGION

Detailed Assessment in Turkey

- Turkish Earthquake Code-Chapter 7
- Identification of Buildings with High Seismic Risk-Urban renewal law

ELABORATION OF MAPS FOR CLIMATIC AND SEISMIC ACTIONS FOR STRUCTURAL DESIGN IN THE BALKAN REGION

Detailed Assessment in TEC

DATA COLLECTION FROM THE BUILDING

- Soil properties
- Foundation system
- Member properties (dimension, mterial)
- Structural system
- Building geometry
- Existing damage/repair/alterations
- Corrosion effect

Knowledge Levels

- Limited: Structural drawings unavailable
- Moderate: Structural drawings available exist YES/NO
- Comprehensive: Structural drawings available

Capacity design

Material properties used in member capacity demermination

ELABORATION OF MAPS FOR CLIMATIC AND SEISMIC ACTIONS FOR STRUCTURAL DESIGN IN THE BALKAN REGION

Moderate Knowledge Level: RC Sector Commisse Buildings

a) Building Geometry

- Obtaining structural drawings if not available, checking existing building with the drawings if the drawings are available
- Determining peculiarities such as short column, building adjacency etc.
- Opening foundation pit to check foundation

b) Member Details

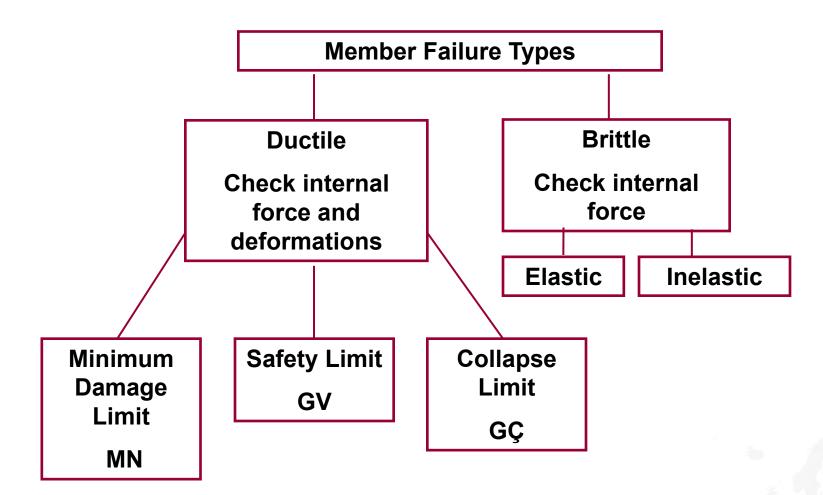
- Validation through peeling of cover on 20 percent of columns and 10 percent of beams per floor. Visual determination of reinforcement grade.
- Determination of reinforcement through nondestructive testing on 20 percent of members (reinforcement realization ratio)

c) Material Properties

- Taking at least, 3 per floor, one per each 400 m2 and total of 9 concrete core samples (column or wall)
- Concrete strength= Mean-standard deviation
- Reinforcement strength = Characteristic yield strength

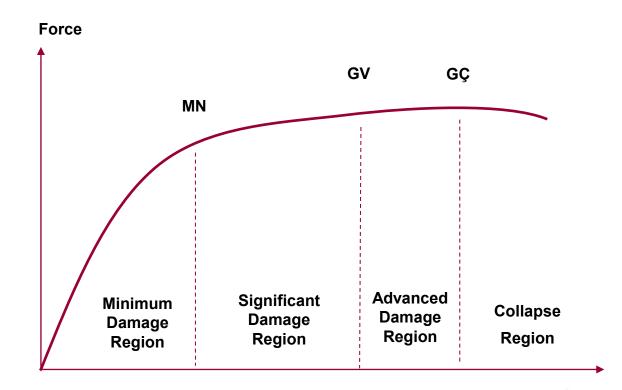
Knowledge Level Factors

Factors to be applied to member capacities


<u>Knowledge Level</u>	Knowled Level Factors
Sınırlı	0.75
Orta	0.90
Kapsamlı	1.00

- Material factors used in design are not applied.
- Material strengths are used in member capacity determination.

ELABORATION OF MAPS FOR CLIMATIC AND SEISMIC ACTIONS FOR STRUCTURAL DESIGN IN THE BALKAN REGION


Member Damage Limits and Regions

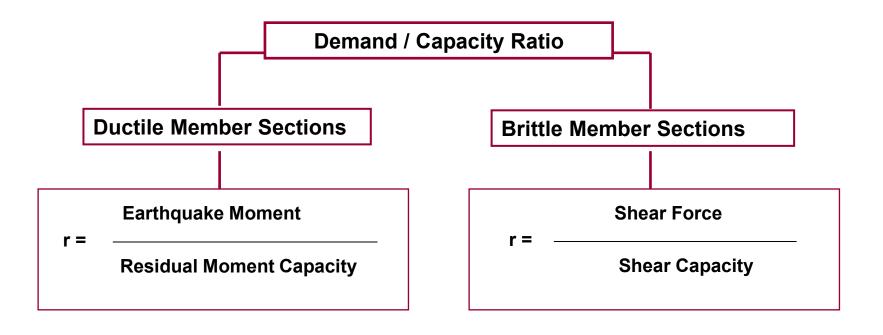
ELABORATION OF MAPS FOR CLIMATIC AND SEISMIC ACTIONS FOR STRUCTURAL DESIGN IN THE BALKAN REGION

Section Damage Limits and Regions in Ductile Members

Deformation

ELABORATION OF MAPS FOR CLIMATIC AND SEISMIC ACTIONS FOR STRUCTURAL DESIGN IN THE BALKAN REGION

Perfomance Levels and Earthquake Effects for Different Buildings


Building Type and Occupancy	Exceedance Probability of Earthquake Ground Motion		
	50 % in 50 years	10 % in 50 years	2 % in 50 years
<u>Important Buildings to be Operational After Earthquakes:</u> Hospitals, health facilities, fire stations, communication and energy facilities, transportation stations, disaster management centers, important governmental buildings.	-	ΙΟ	LS
Buildings with Dense and Long Term Occupacion: Schools, Dormitories, hostels, military posts, prisons, museums.	-	ΙΟ	LS
Buildings with Dense and Short Term Occupation: Theatre halls, Concert halls, Cultural centers, Sports facilities	ΙΟ	LS	-
<u>Hazardous Buildings:</u> Buildings housing toxic, explosives and explosive substances	-	LS	СР
<u>Other Buildings:</u> Buildings not classified above (residential, officies, hotels, industrial facilities etc.)	-	LS	-

Linear Elastic Analysis

a) Equivalent Lateral Load

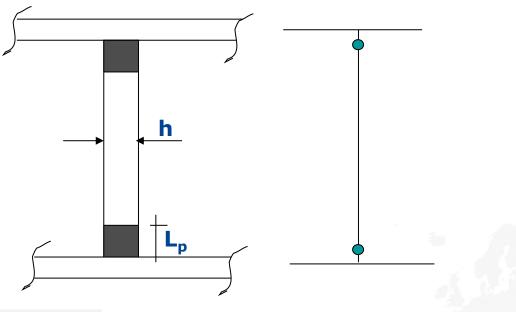
b) Modal Superposition

Residual Moment Capacity = Section Moment Kapacity – Vertical Load Moment

ELABORATION OF MAPS FOR CLIMATIC AND SEISMIC ACTIONS FOR STRUCTURAL DESIGN IN THE BALKAN REGION

Demand/Capacity Ratios(r) for Columns

Ductile Columns		Damage Limit			
$\frac{N_K}{A_c f_{cm}}$	Confinement	$\frac{V_e}{b_w d f_{ctm}}$	MN	GV	GÇ
≤ 0.1	Yes	≤ 0.65	3	6	8
≤ 0.1	Yes	≥ 1.30	2.5	5	6
\geq 0.4 ve \leq 0.7	Yes	≤ 0.65	2	4	6
\geq 0.4 ve \leq 0.7	Yes	≥ 1.30	1.5	2.5	3.5
≤ 0.1	No	≤ 0.65	2	3.5	5
≤ 0.1	No	≥ 1.30	1.5	2.5	3.5
\geq 0.4 ve \leq 0.7	No	≤ 0.65	1.5	2	3
\geq 0.4 ve \leq 0.7	No	≥ 1.30	1	1.5	2
≤ 0.7	-	-	1	1	1
В	rittle Columns	5		1	


Linear Inelastic Analysis

a) Pushover

b) Time history

Strains are calculated at member ends using lumped plasticity models
Calculated steel and concrete strains are compared to strain limits

ELABORATION OF MAPS FOR CLIMATIC AND SEISMIC ACTIONS FOR STRUCTURAL DESIGN IN THE BALKAN REGION

Acceptance Criteria

Minimum Damage Limit:

 $\epsilon_{c} = 0.0035$; $\epsilon_{s} = 0.010$

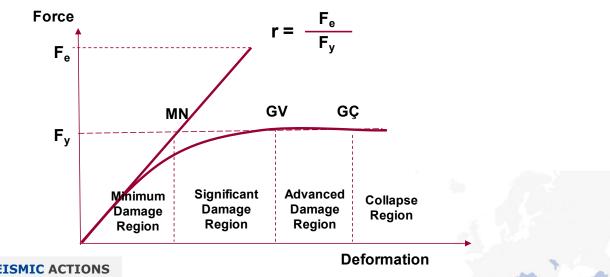
Safety Limit:

 $\epsilon_{c} = 0.0035 + 0.01 \ (\rho_{s} / \rho_{sm}) < 0.0135 \ ; \epsilon_{s} = 0.040$

Collapse Limit:

 $\epsilon_{\rm c}$ = 0.004 + 0.014 ($\rho_{\rm s}$ / $\rho_{\rm sm})$ < 0.018 ; $\epsilon_{\rm s}$ = 0.060

ELABORATION OF MAPS FOR CLIMATIC AND SEISMIC ACTIONS FOR STRUCTURAL DESIGN IN THE BALKAN REGION


Determination of Performance: Life Safety Performance

• At most 30 percent of the beams and some of the columns can be in advanced damage region.

• The columns in the advanced damage region can contribute to the total story shear by not more than 20 percent.

• All other members must be in the minimum or significant damage region.

•Needs strengthening.

ELABORATION OF MAPS FOR CLIMATIC AND SEISMIC ACTIONS FOR STRUCTURAL DESIGN IN THE BALKAN REGION

IDENTIFYING BUILDINGS WITH HIGH SEISMIC RISK UNDER URBAN RENEWAL LAW IN TURKEY

Risk Assessment Procedure

1- Field Survey

- Building plans can be obtained from the first floor except vertical irregularity detected
- Typical building stock has first story as the critical floor
- Minimum 5 cores +1 from columns and walls for each 80m²
- Reinforcement must be checked at least for 6 columns and walls
- Infill walls without any significant openings must be determined

ELABORATION OF MAPS FOR CLIMATIC AND SEISMIC ACTIONS FOR STRUCTURAL DESIGN IN THE BALKAN REGION

Risk Assessment Procedure

2- Modeling and Analysis

- Model based on critical story plan is allowed (except vert. Irr.)
- Equivalent lateral force and response spectrum analyses options
- Analysis Cases:

- D+nQ±E/6 for axial forces for member strength calcs.

- D+nQ±E for assessment
- Simplified Effective Member Rigidities

ELABORATION OF MAPS FOR CLIMATIC AND SEISMIC ACTIONS FOR STRUCTURAL DESIGN IN THE BALKAN REGION

Risk Assessment Procedure

3- Assessment

- Component Level:
- DCR/IDR compared with DCR/IDR limits for vertical members.
- For systems with significant amount of walls, if *IDRmax<0.75%, only IDR check is performed.*

Building Risk:

- BSR = (Base Shear Force of Vulnerable Columns) / (Story Shear

Sircar	(Σσ _{cols and walls} / no of col and walls)	BSR _{limit}	
	>0.65f _{cm}	0	
ELABORATION OF MAF	<0.10 f _{cm}	0.35	

27-28 October 2015, Zagreb

Class A Column Limits

N/No	m limit	IDR _{limit}
0.1	5.0	0.035
0.6	2.5	0.0125

FOR STRUCTURAL DESIGN IN THE BALKAN REGION

ELABORATION

REHABILITATION METHODS

ELABORATION OF MAPS FOR CLIMATIC AND SEISMIC ACTIONS FOR STRUCTURAL DESIGN IN THE BALKAN REGION

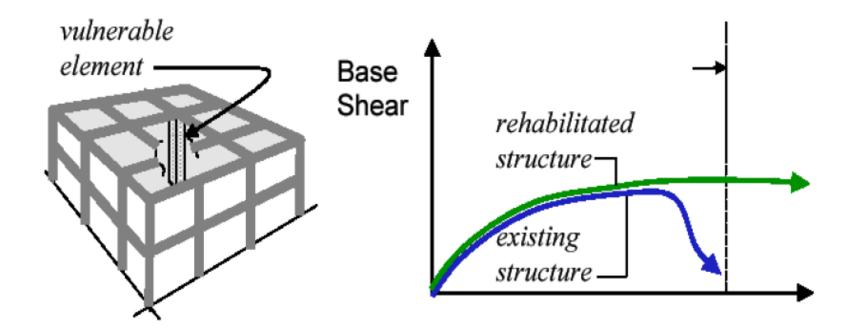
Rehabilitation of RC Buildings

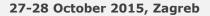
A) Enhance member capacities (strength and deformation)

Increase shear strength 0 RC Jacketing Increase compressive strength 0 Steel Jacketing Increase flexural deformation capacity 0 FP confinement Improve splice length 0

B) Enhance structural system capacity

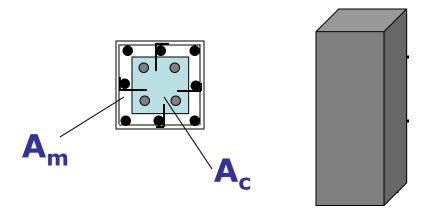
- Addition of RC shear walls
- Addition of External frames
- Retrofit of masonnry infill walls
- Reduction of mass
- Installing energy dissipation devices
- Improving weaknesses: short column, soft story etc.


ELABORATION OF MAPS FOR CLIMATIC AND SEISMIC ACTIONS STRUCTURAL DESIGN IN THE BALKAN REGION



Member Strengthening

ELABORATION OF MAPS FOR CLIMATIC AND SEISMIC ACTIONS FOR STRUCTURAL DESIGN IN THE BALKAN REGION



Wrapping of Columns- RC jacketing

Objective: Increase axial load, flexural and shear capacity

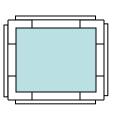
Method: Existing member section is increased by adding longitudinal and transverse reinforcement.

Minimum jacket thickness=10 cm
Transverse reinforcement per code.
Confined core section and jacket sections are used in capacity calculation.

ELABORATION OF MAPS FOR CLIMATIC AND SEISMIC ACTIONS FOR STRUCTURAL DESIGN IN THE BALKAN REGION

Application of RC Jacketing

ELABORATION OF MAPS FOR CLIMATIC AND SEISMIC ACTIONS FOR STRUCTURAL DESIGN IN THE BALKAN REGION



Wrapping of Columns- Steel jacketing

Objective: Increase axial load, flexural and shear capacity and improve splice weaknesses

Method: Jacketing column faces with steel plates and angles

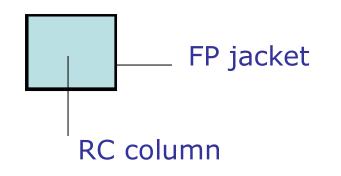
_	51

ELABORATION OF MAPS FOR CLIMATIC AND SEISMIC ACTIONS FOR STRUCTURAL DESIGN IN THE BALKAN REGION

Steel Jacketing

ELABORATION OF MAPS FOR CLIMATIC AND SEISMIC ACTIONS FOR STRUCTURAL DESIGN IN THE BALKAN REGION

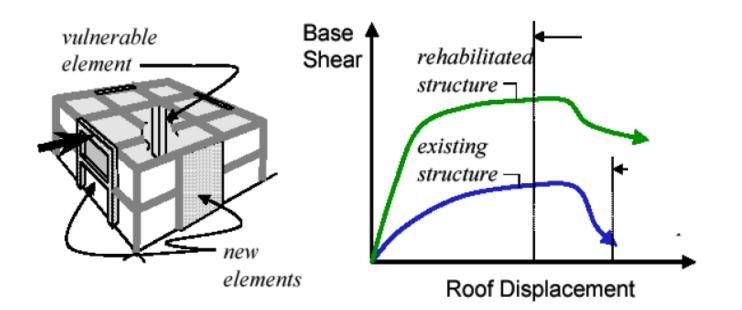
27-28 October 2015, Zagreb


Flexural capacity can be increased by increasing the section size.

Wrapping of Columns-CFRP Jacketing

Objective: Increase shear and compressive strength, increase ductility, improve reinforcement splicing weaknesses

Method: Wrapping FP around the column. Fibers need to be parallel to transverse reinforcement.


Rehabilitation through fiber polimer

System rehabilitation

ELABORATION OF MAPS FOR CLIMATIC AND SEISMIC ACTIONS FOR STRUCTURAL DESIGN IN THE BALKAN REGION

Adding shear walls

- The most common method for buildings having inadequate rigidity and strength.
- Walls are continuous over the height and from column to column (filling the span).
- Symmetric distribution in plan.
- New foundation for walls
- Wall end regions are formed.

ELABORATION OF MAPS FOR CLIMATIC AND SEISMIC ACTIONS FOR STRUCTURAL DESIGN IN THE BALKAN REGION

Addition of shear walls

ELABORATION OF MAPS FOR CLIMATIC AND SEISMIC ACTIN

Design of shear wall

- Anchorage bars:
 - Design for friction shear
 - Anchorage diameter > ø 16 mm,
 - Anchorage length > 10 ø
 - Anchorage spacing < 40cm
- Continuous reinforcement between floors
- Wall end regions
- Axial load capacity
- Foundation forces

Addition of shear walls-Notes

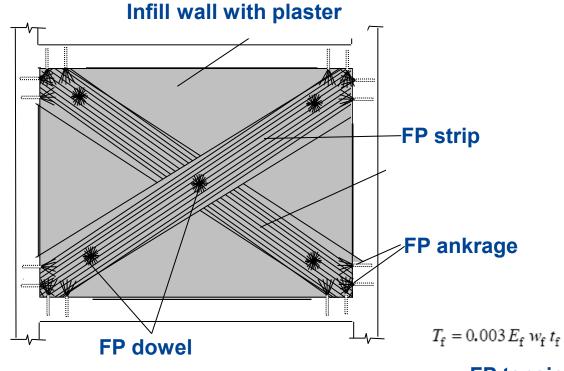
- Anchorage problems for low strength existing concrete
- Foundation connections are important.
- Proper anchorage to surrounding frame for composite action.

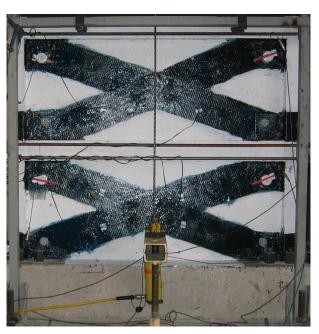
RC wall and column jacketing

Chemical achorage

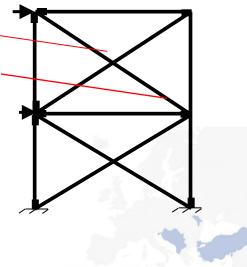
Anchorage bars

Rehabilitation using CFRP



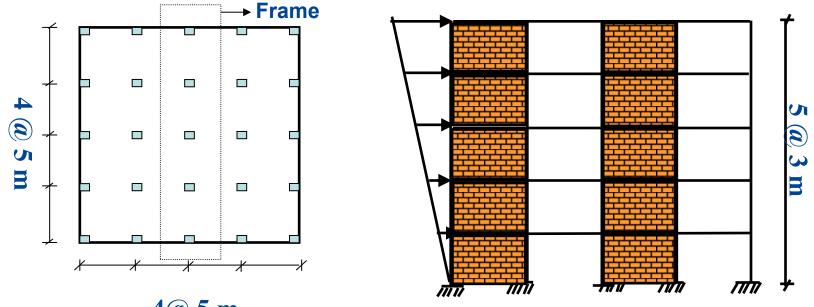

ELABORATION OF MAPS FOR CLIMATIC AND SEISMIC ACTIONS FOR STRUCTURAL DESIGN IN THE BALKAN REGION

Rehabilitation using CFRP



FP tension bar

Infill wall compression bar


TABLO 7.5 – GÜÇLENDİRİLMİŞ DOLGU DUVARLAR İÇİN HASAR SINIRLARINI TANIMLAYAN ETKİ/KAPASİTE ORANLARI (r₃) VE GÖRELİ KAT ÖTELEMESİ ORANLARI

	ℓ _{duvar} / h _{duvar} oranı aralığı	Hasar Sınırı		
ELAB	0.5 - 2.0	MN	GV	GÇ
FOR S	Etki/Kapasite Oram (rs)	1	2	-
27-28	Göreli Kat Ötelemesi Oranı	0.0015	0.0035	-

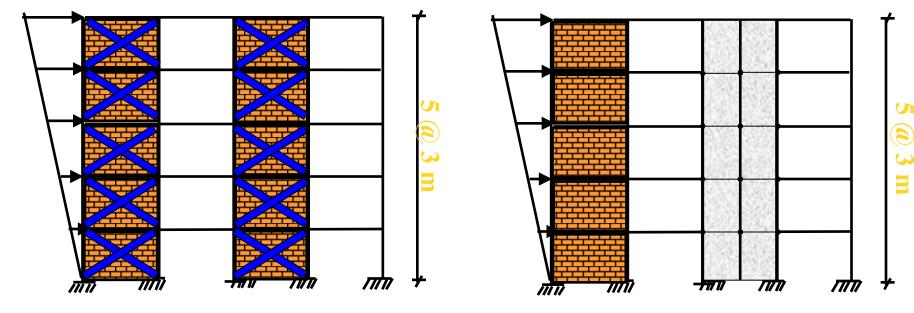
Example application

4@ 5 m

Column: 400 mm x 400 mm , $\rho = 1\%$, s = 350 mm Beam : 300 mm x 600 mm , $\rho = 0.5\%$ $f_c' = 10$ MPa , $f_y = 420$ MPa, $f_{mc} = 2$ MPa, $t_{in} = 100$ mm $f_{cp} = 2$ MPa, $t_p = 40$ mm

ELABORATION OF MAPS FOR CLIMATIC AND SEISMIC ACTIONS FOR STRUCTURAL DESIGN IN THE BALKAN REGION

Alternatives

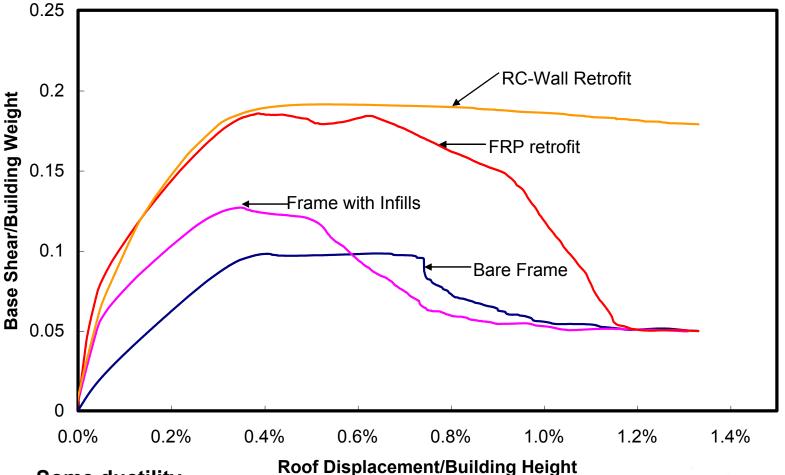

FP strengthening

Addition of shear walls

 $f_c = 40 MPa$,

t_w =200 mm,

 $\rho_1 = 0.3 \%$



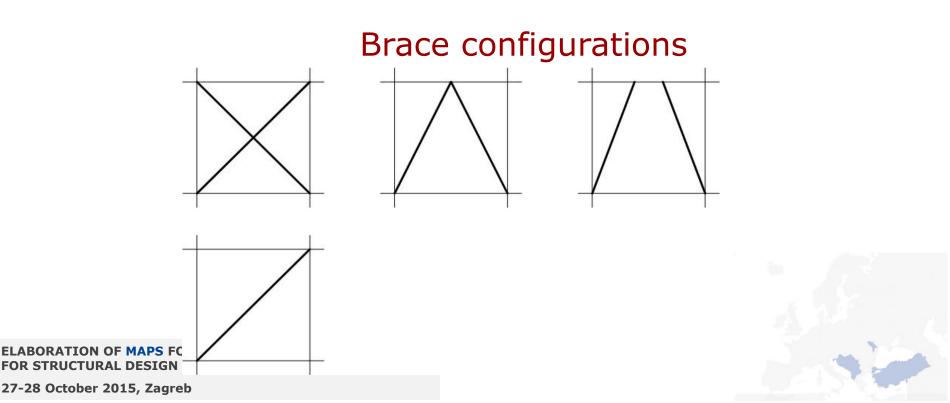
f_{CFRP} = 3450 MPa, w_f =750 mm

ELABORATION OF MAPS FOR CLIMATIC AND SEISMIC ACTIONS FOR STRUCTURAL DESIGN IN THE BALKAN REGION

Comparison

- Some ductility
- Capacity increase (50 %)

Similar behavior


ELABORATION OF MAPS FOR CLIMATIC AND SEISMIC ACTIONS FOR STRUCTURAL DESIGN IN THE BALKAN REGION

- Requires adequate infill walls
- User friendly

Strengthening using diagonal braces

Increase rigidity. Increase of capacity. Architecturally preferred over RC wall. Connection to existing members is difficult.

Appication in Turkey (**Prefabricated building**)

Bracing-Application

Bracing-Application

ELABORATION OF MAPS FOR CLIMATIC AND SEISMIC ACTIONS FOR STRUCTURAL DESIGN IN THE BALKAN REGION

European Commission

Bracing-Application

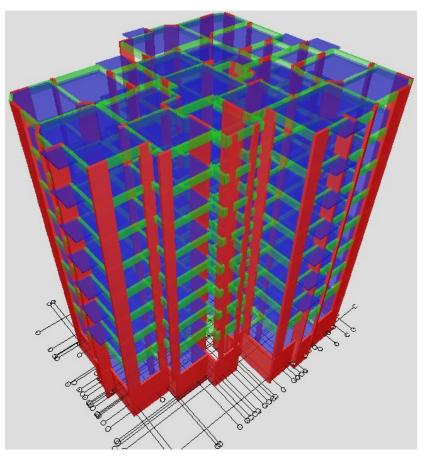
ELABORATION OF MAPS FOR CLIMATIC AND SEISMIC ACTIONS FOR STRUCTURAL DESIGN IN THE BALKAN REGION

AN EXAMPLE DESIGN

ELABORATION OF MAPS FOR CLIMATIC AND SEISMIC ACTIONS FOR STRUCTURAL DESIGN IN THE BALKAN REGION

General Information

Building consists of Basement+Ground+8 Typical floors. Existing Material Properties: C10 / S220 Reinforcement Realization Factor: %99 Storey Heights :

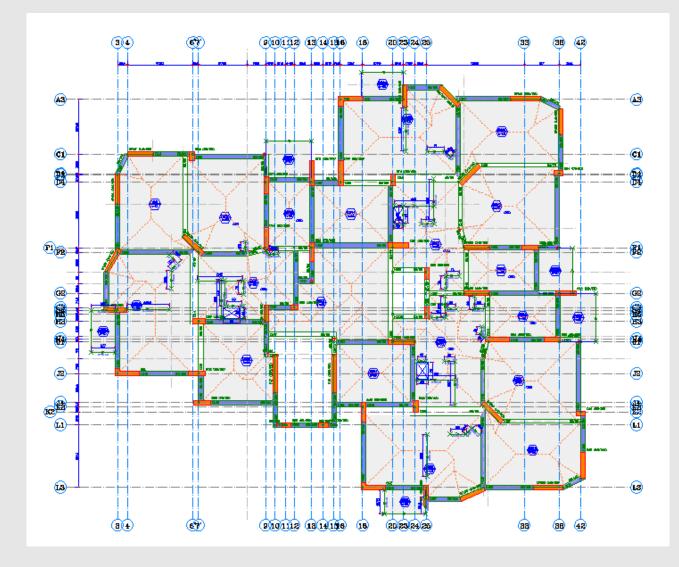

- Basement Floor 3.6 m
- Ground Floor 4.8 m
- Typical Storeys 3 m
- Total Building Height 28.8 m

Earthquake Zone : 1

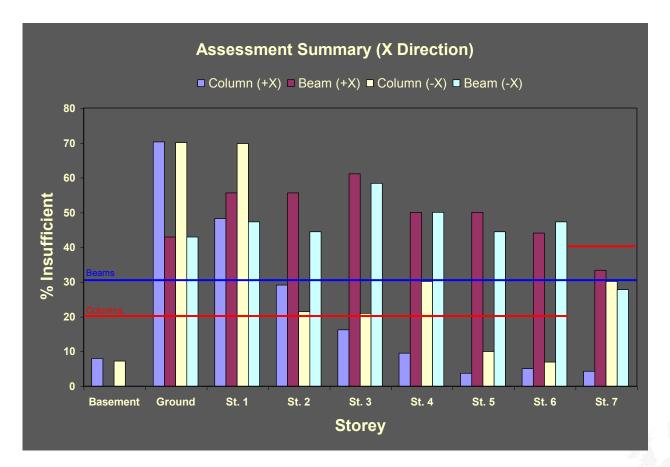
Soil Type : Z2

Building is constructed according to the TEC'75 criteria.

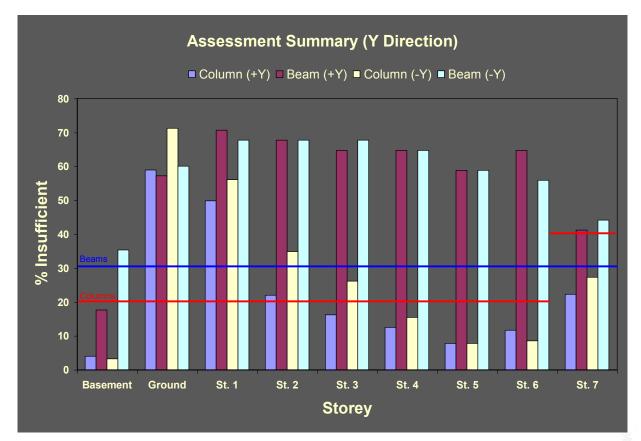
Lateral Load Resisting System consists of frames. There is no member to be classified as "shearwall" according to TEC.



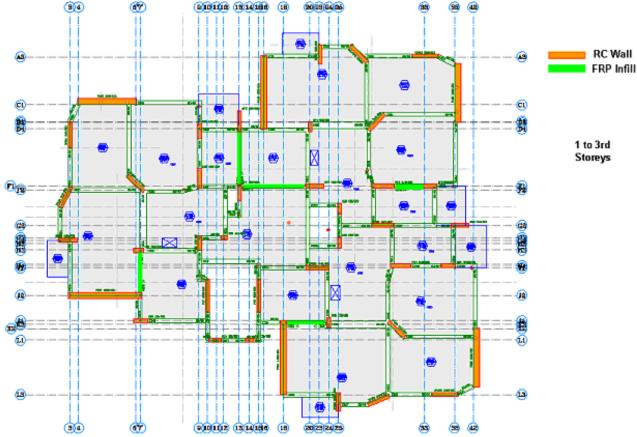
General Information


General Information

Typical Storey Plan Ground, 1, 2, 3, 4, 5, 6, 7


Existing Building Assessment

ELABORATION OF MAPS FOR CLIMATIC AND SEISMIC ACTIONS FOR STRUCTURAL DESIGN IN THE BALKAN REGION


Existing Building Assessment

ELABORATION OF MAPS FOR CLIMATIC AND SEISMIC ACTIONS FOR STRUCTURAL DESIGN IN THE BALKAN REGION

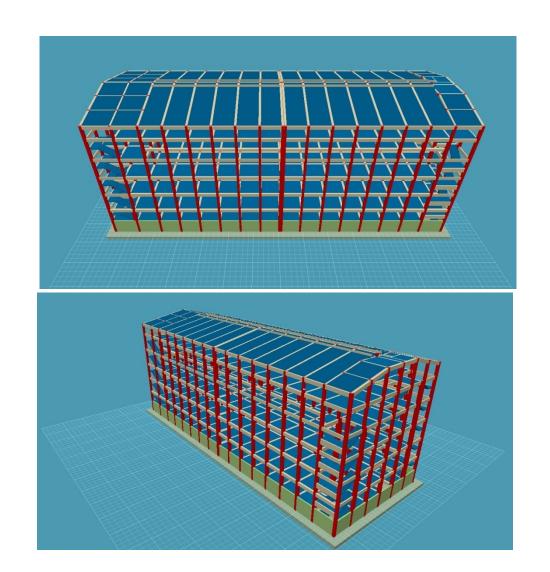
Recommended Rehabilitation Pattern

ELABORATION OF MAPS FOR CLIMATIC AND SEISMIC ACTIONS FOR STRUCTURAL DESIGN IN THE BALKAN REGION

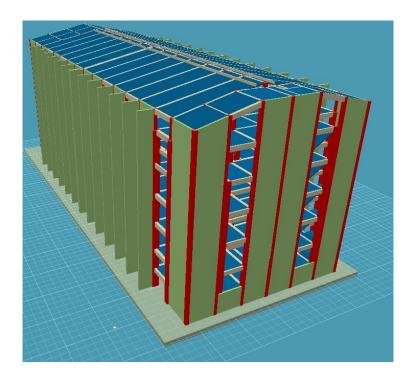
Cost Estimation Summary

Pattern 1 : RC walls			
Concrete	22.576 YTL		
Rebar	28.618 YTL		
Formwork	14.821 YTL		
Workmanship	18.863 YTL		
Rent&Transportation	18.000 YTL		
Additional	16.976 YTL		
TOTAL	119.854 YTL		

Pattern 2 : FRP + RC walls			
Concrete	12.008 YTL		
Rebar	15.221 YTL		
Formwork	7.883 YTL		
Workmanship	10.032 YTL		
Rent&Transportation	9.000 YTL		
FRP	74.100 YTL		
Additional	4.514 YTL		
TOTAL	132.760 YTL		


EXAMPLE APPLICATION: EXTERNAL REHABILITATION

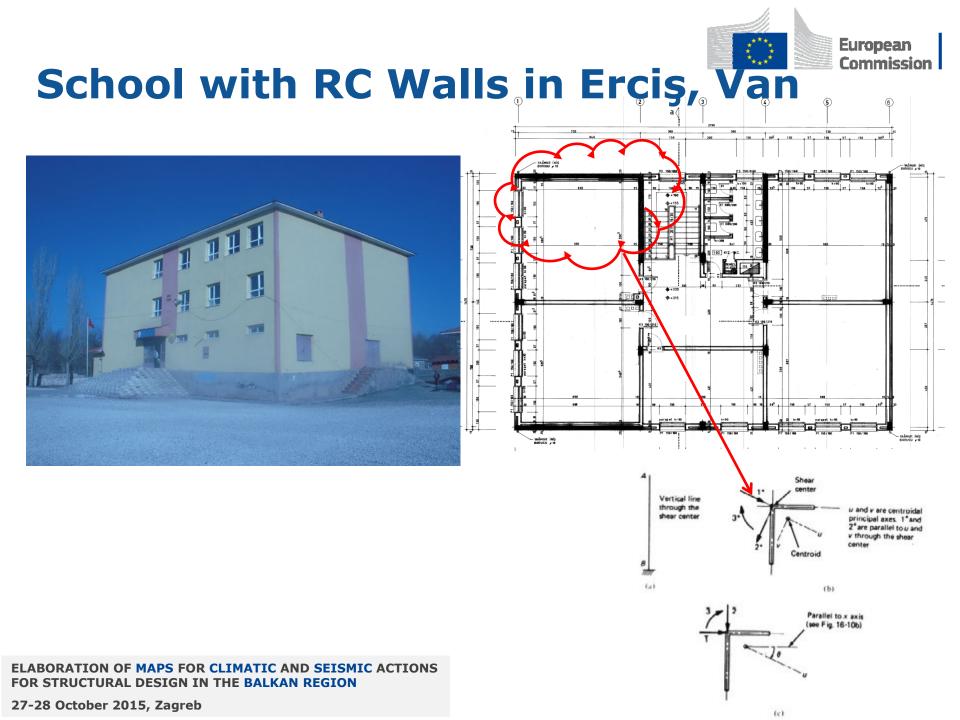
ELABORATION OF MAPS FOR CLIMATIC AND SEISMIC ACTIONS FOR STRUCTURAL DESIGN IN THE BALKAN REGION


Example Application-External Rehabilitation

- 1 Basement+ 6 normal floor
- Factory building
 to be operational during rehabilitation
 - no business interruption
- RC walls are added

External Rehabilitation

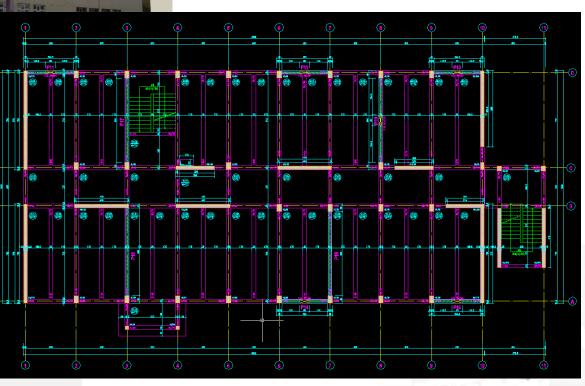
- RC shear walls added in both direction
- Columns at wall ends strenthened
- In transverse direction, walls out of buildings



SEISMIC PERFORMANCE: VAN EARTHQUAKE OF 2011

ELABORATION OF MAPS FOR CLIMATIC AND SEISMIC ACTIONS FOR STRUCTURAL DESIGN IN THE BALKAN REGION

School building in Van Earthquake

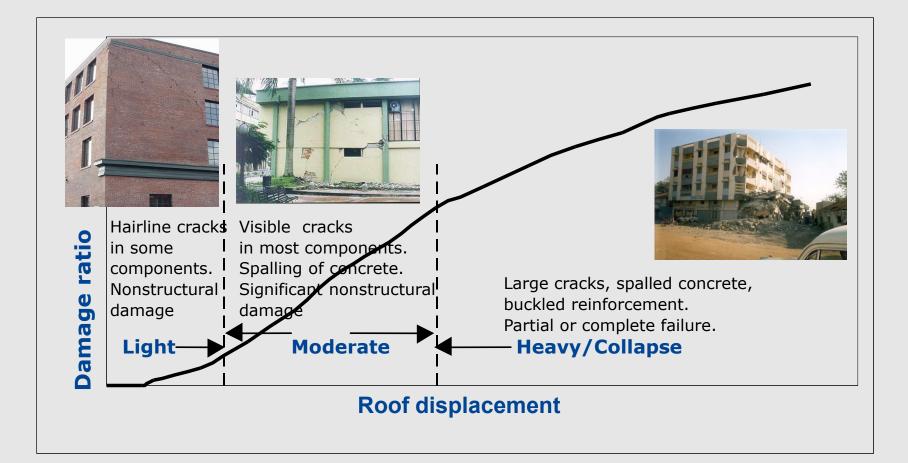


Strengthened school in Erciş, Van

ELABORATION OF MAPS FOR CLIMATIC AND SEISM FOR STRUCTURAL DESIGN IN THE BALKAN REGION

Strengthened school

ELABORATION OF MAPS FOR CLIMATIC AND SEISMIC ACTIONS FOR STRUCTURAL DESIGN IN THE BALKAN REGION



Strengthened school

