

Eurocodes Background and Applications

Design of Steel Buildings

with worked examples

Bolts, welds, column base

16-17 October 2014 Brussels, Belgium

Organised and supported by

European Commission DG Enterprise and Industry Joint Research Centre European Convention for Constructional Steelwork European Committee for Standardization CEN/TC250/SC3

František Wald Czech Technical University in Prague

Joint Research Centre

Motivation

To present

- Content/principles
- Selected particularities
- Questions

To offer

Worked examples

for design according to EN1993-1-8: 2005 of

Bolts Welds

- vveids
- Column bases

Scope of the lecture

Bolts

- General
- Design resistance of individual fasteners
 - Non-preloading bolts
 - Slotted holes
- Design for block tearing
- Worked example
- Summary

Welds

- General
- Fillet weld
 - Design model
 - Design example
 - Welding to flexible plate
- Summary

Column bases

- Basis of design
- Components
 - Base plate and concrete in compression
 - Base plate in bending and bolt in tension
 - Anchor bolt in shear
- \circ Assembly
 - Resistance
 - Stiffness
- Classification
- Worked examples
- Summary

Scope of the lecture

- General
 - Fillet weld
 - Design model
 - o Design example
 - Welding to flexible plate
- o Summary

Column bases

- Basis of design
- Components
 - Base plate and concrete in compression
 - Base plate in bending and bolt in tension
 - o Anchor bolt in shear
- Assembly
 - Resistance
 - Stiffness
 - Classification
- Worked examples
- o Summary

Connections made with bolts, rivets or pins in EN1993-1-8: 2005

3.1 Bolts,	Bolts, nuts and washers pg.				
3.1.1 3.1.2	General Preloaded bolts		20 20		
3.2 Rivets			20		
3.3 Ancho	3.3 Anchor bolts				
3.4 Categ	3.4 Categories of bolted connections				
3.4.1 3.4.2	Shear connections Tension connections		21 21		
3.5 Positi	oning of holes for bolts and rivets		23		
3.6 Desig	n resistance of individual fasteners		24		
3.6.1 3.6.2	Bolts and rivets Injection bolts		24 28		
3.7 Group	3.7 Group of fasteners				
3.8 Long	3.8 Long joints				
3.9 Slip re	3.9 Slip resistant connections using 8.8 or 10.9 bolts				
3.9.1 3.9.2 3.9.3	Design Slip resistance Combined tension and shear Hybrid connections		30 31 31		
3.10	Deductions for fastener holes		31		
3.10.1 3.10.2	General Design for block tearing		31 32		
3.10.3 3.10.4	Angles connected by one leg and other unsymmetrically connected members in tension Lug angles		33 34		
3.11	Prying forces		34		
3.12	Distribution of forces between fasteners at the ultimat	e limit state	34		
3.13	Connections made with pins		35		
3.13.1 3.13.2	General Research Design of pins Centre		35 35		

Bolt standards

EN 15048

Non-preloaded structural bolting assemblies

- Part 1: General requirements
- Part 2: Suitability test

EN 14399

High-strength structural bolting for preloading

High-strength structural bolting for preloading

EN 14399

Part 1: General requirements

- Part 2: Suitability test for preloading
- Part 3: System HR Hexagon bolt and nut assemblies
- Part 4: System HV Hexagon bolt and nut assemblies
- Part 5: Plain washers
- Part 6: Plain chamfered washers
- Part 7: System HR Countersunk head bolt and nut assemblies
- Part 8 : System HV Hexagon fit bolt and nut assemblies

Part 3: System HR — Hexagon bolt and nut assemblies

Part 4: System HV — Hexagon bolt and nut assemblies

m.

£

Research Centre

Mechanical properties

- **EN ISO 898-1**, Mechanical properties of fasteners made of carbon steel and alloy steel Part 1: Bolts, screws and studs **(ISO 898-1:1999)**
- **EN 20898-2**, Mechanical properties of fasteners Part 2: Nuts with specified proof load values Coarse thread **(ISO 898-2:1992)**
- **EN ISO 3506-1**, Mechanical properties of corrosion-resistant stainless-steel fasteners Part 1: Bolts, screws and studs **(ISO 3506-1:1997)**
- **EN ISO 3506-2**, Mechanical properties of corrosion-resistant stainless-steel fasteners Part 2: Nut **(ISO 3506-2:1997)**

Material

Bolts made of carbon steel and alloy steel: 4.6, 4.8, 5.6, 5.8, 6.8, 8.8, 10.9

Nuts made of carbon steel and alloy steel:

4, 5, 6, 8, 10, 12

Bolts made of austenitic stainless steel:

Nuts made of austenitic stainless steel:

50, 70, 80

50, 70, 80

Washers (if appropriate) according to hardness class HV 100 or HV 200

EN 1993-1-8 **Material Properties**

Nominal values for bolts

- f_{yb} is yield strength f_{ub} is ultimate tensile strength

Bolt class	4.6	4.8	5.6	5.8	6.8	8.8	10.9
f _{yb} (N/mm²)	240	320	300	400	480	640	900
f _{ub} (N/mm²)	400	400	500	500	600	800	1000

Holes

- o <u>Normal</u>
 - +1 mm for M 12
 - +2 mm for M 16 up M 24
 - +3 mm for M 27 and bigger
- Oversized with 3 mm (M12) up 8 mm (M27)
- <u>Slotted</u> (elongated)
- <u>Close fitting</u> flushed bolts

for bolt M20 must be the clearance $\Delta d < 0,3$ mm

EN 1090-2 Execution of steel structures and aluminium structures – Part 2: Technical requirements for steel structures

Scope of the lecture

Bolts

oGeneral

Design resistance of individual fasteners

- Non-preloading bolts
- Slotted holes
- Design for block tearing
- Worked example

Summary

Welds

- General
 Fillet weld
 - Fillet weid
 - Design modelDesign example
 - Welding to flexible plate
- Summary

Column bases

- Basis of design
- Components
 - Base plate and concrete in compression
 - \circ $\hfill Base plate in bending and bolt in tension$
 - Anchor bolt in shear
- Assembly
 - Resistance
 - Stiffness
- Classification
- Worked examples
- o Summary

Resistance in shear in one shear plane

$$F_{\rm v,Rd} = \frac{\alpha_{\rm v} A f_{\rm ub}}{\gamma_{\rm M2}}$$

where the shear plane passes through the **unthreaded portion of the bolt**

 $\alpha_v = 0,6$

- A is the gross cross section of the bolt f_{ub} is ultimate tensile strength for bolt y_{ub} s partial safety factors for resistance of
- γ_{M2} s partial safety factors for resistance of bolts

Resistance in shear in one shear plane

$$F_{\rm v,Rd} = \frac{\alpha_{\rm v} A f_{\rm ub}}{\gamma_{\rm M2}}$$

where the shear plane passes through the **threaded portion** of the bolt

```
- for classes 4.6, 5.6 and 8.8: \alpha_v = 0.6
```

- for classes 4.8, 5.8, 6.8 and 10.9 $\alpha_{\rm v}$ = 0,5
- Ais the tensile stress area of the bolt A_s f_{ub} is ultimate tensile strength for bolt γ_{M2} s partial safety factors for resistance of bolts

Resistance in bearing

$$F_{b,Rd} = \frac{k_1 a_b d t f_u}{\gamma_{M2}}$$

where α_b is the smallest of α_d , $\frac{f_{ub}}{f_u}$ or 1,0

In the direction of load transfer

- for end bolts:
$$\alpha_{d} = \frac{e_{1}}{3 d_{0}}$$
, for inner bolts $\alpha_{d} = \frac{p_{1}}{3 d_{0}} - \frac{1}{4}$

Perpendicular to the direction of load transfer

- for edge bolts k_1 is the smallest of 2,8 $\frac{e_2}{d_0}$ - 1,7 or 2,5

- for inner bolts k_1 is the smallest of 1,4 $\frac{e_2}{d_0}$ – 1,7 or 2,5

Bearing of Plate and Bolt

Inner bolt

Outer bolt

Resistance in Bearing

Load on a bolt not parallel to the edge

the bearing resistance may be verified separately

for the bolt load components parallel and normal to the edge

in oversized holes reduce bearing by 0,8

Influence of distances to force

$$F_{b,Rd} = \frac{k_{b}\alpha_{b}dtf_{u}}{\gamma_{M2}}$$

Prallel to acting force

$$\alpha_{b} = \min \begin{cases} \frac{e_{1}}{3 d_{0}} \\ \frac{p_{1}}{3 d_{0}} - 0.25 \\ \frac{f_{ub}}{f_{u}} \\ 1 \end{cases}$$

Joint Research Centre Brussels, 16 - 17 October 2014

Perpendicular to acting force

$$F_{b,Rd} = \frac{k_{\mu}\alpha_{b}dtf_{u}}{\gamma_{M2}}$$

$$k_{1} = \min \begin{cases} 2,8 \frac{e_{2}}{d_{0}} - 1,7 \\ 1,4 \frac{p_{2}}{d_{0}} - 1,7 \\ 2,5 \end{cases}$$

Eurocodes - Design of steel buildings with worked examples

Influence of distances

Nomimal transversal distances:

$$e_{1} = 1,2 \ d_{0}$$

$$p_{1} = 2,2 \ d_{0}$$

$$e_{2} = 1,2 \ d_{0}$$

$$p_{2} = 2,4 \ d_{0}$$

$$k_{1} = \min \left\{ 2,8 \ \frac{e_{2}}{d_{0}} - 1,7 \\ 1,4 \ \frac{p_{2}}{d_{0}} - 1,7 \\ 2,5 \end{array} \right\} = \min \left\{ 2,8 \ \frac{1,2 \ d_{0}}{d_{0}} - 1,7 \\ 1,4 \ \frac{2,4 \ d_{0}}{d_{0}} - 1,7 \\ 2,5 \end{array} \right\} = \min \left\{ 1,66 \\ 1,66 \\ 2,5 \end{bmatrix} = 1,66$$

End bolts
$$\alpha_{b} = \frac{e_{1}}{3 d_{0}} = \frac{1.2 d_{0}}{3 d_{0}} = 0.400$$
 $F_{b,Rd} = \frac{k_{1} a_{b} d t f_{u}}{\gamma_{M2}} = \frac{1.66 \cdot 0.400 d t f_{u}}{\gamma_{M2}} = 0.664 \frac{d t f_{u}}{\gamma_{M2}}$
Internal bolts $F_{b,Rd} = \frac{k_{1} a_{b} d t f_{u}}{\gamma_{M2}} = \frac{1.66 \cdot 0.483 d t f_{u}}{\gamma_{M2}} = 0.802 \frac{d t f_{u}}{\gamma_{M2}}$
 $\alpha_{b} = \frac{p_{1}}{3 d_{0}} - 0.25 = \frac{2.2 d_{0}}{3 d_{0}} - 0.25 = 0.483$ Joint Research Research

Eurocodes - Design of steel buildings with worked examples

Brussels, 16 - 17 October 2014

Pitch distances

Min

 $p_{1} = 2,2 d_{0}$ $p_{2} = 2,4 d_{0}$ optimum e_{1} from 1,2 d_{0} to 1,45 d_{0} $e_{2} = 1,2 d_{0}$ $F_{b,Rd} = \frac{k_{1} a_{b} dt f_{u}}{\gamma_{M2}} = \frac{1,66 \cdot 0,483 dt f_{u}}{\gamma_{M2}} = 0,802 \frac{dt f_{u}}{\gamma_{M2}}$

Large

 $p_1 = 3,75 d_0$ $p_2 = 3,0 d_0$ $e_1 = 3,0 d_0$ $e_2 = 1,5 d_0$

$$F_{b,Rd} = \frac{k_1 a_b dt f_u}{\gamma_{M2}} = \frac{2,5 \cdot 1,0 dt f_u}{\gamma_{M2}} = 2,5 \frac{dt f_u}{\gamma_{M2}}$$

Steel S690

Experiment bolts M12 10.9 minimal and maximal pitch

 $e_1 = 1,0 d_0 < \min. e_1 = 1,2 d_0$ Comparison to EN

B1 B2 B3

Last-Verformungskurve Versuch VL-100-220-385

 $e_1 \text{ and } p_1 \text{ min.} \qquad F_u/F_{EN3} = 1,27$

 e_1 and p_1 max. $F_u/F_{EN3} \cong 1,02$

 $e_1 = 2,4d_0$ and $p_1 = 3,2d_0$

Last-Verfromungskurve Versuch VL-240-320-385

University of Dortmund, Institute of Steel Structures European Commission

Brussels, 16 - 17 October 2014

Eurocodes - Design of steel buildings with worked examples

Comparison of simulation VL-100-220-385

University of Dortmund, Institute of Steel Structures

Good agreement

Diffference D=5,5%

Scope of the lecture

Bolts

oGeneral

Design resistance of individual fasteners

- Non-preloading bolts
- Slotted holes
- Design for block tearing
- Worked example

Summary

Welds

- General
- Fillet weld
 - Design model
 - Design exampleWelding to flexible plate
- Summary

Column bases

- Basis of design
- Components
 - Base plate and concrete in compression
 - Base plate in bending and bolt in tension
 - Anchor bolt in shear
- Assembly
 - Resistance
 - Stiffness
- Classification
- Worked examples
- Summary

Bearing resistance in slotted holes

Loaded perpendicular to the long direction of the slot 60% of resistance in circular holes

Scope of the lecture

Bolts

oGeneral

Design resistance of individual fasteners

- Non-preloading bolts
- Slotted holes
- Design for block tearing
- Worked example

Summary

Welds

- General
 Fillet weld
 - Design model
 - Design model
 Design example
 - Welding to flexible plate

Summary

Column bases

- Basis of design
- Components
 - Base plate and concrete in compression
 - \circ \quad Base plate in bending and bolt in tension
 - Anchor bolt in shear
- Assembly
 - Resistance
 - Stiffness
- Classification
- Worked examples
- o Summary

Block tearing

Failure in shear at the row of bolts along the shear face of the hole group accompanied by

Tensile rupture

along the line of bolt holes on the tension face of the bolt group

Orbison J.G., Wagner M. E., Fritz W.P. 1999, Tension plane behavior in single-row bolted connections subject to block shear, Journal of Constructional Steel Research, 49, 225 – 239

Test

FE model

Brussels, 16 - 17 October 2014

Topkaya C., 2004, A finite element parametric study on block shear failure of steel tension members, Journal of Constructional Steel Research, 60, 1615 – 1635, ISSN 0143-974X.

Design model

Symmetric bolt group subject to concentric loading

- $V_{\rm eff,1,Rd}$ = $f_{\rm u} A_{\rm nt} / \gamma_{\rm M2}$ + (1/V3) $f_{\rm y} A_{\rm nv} / \gamma_{\rm M0}$
- A_{nt} net area subjected to tension
- A_{nv} net area subjected to shear

Eccentric loading

 $V_{\rm eff,2,Rd} = 0.5 f_{\rm u} A_{\rm nt} / \gamma_{\rm M2} + (1/\sqrt{3}) f_{\rm y} A_{\rm nv} / \gamma_{\rm M0}$

$$V_{\text{eff,2,Rd}} = \frac{0.5 \,r_{\text{u,p}} \,A_{\text{nt}}}{\gamma_{\text{M2}}} + \frac{1}{\sqrt{3}} \,f_{\text{y,p}} \frac{A_{\text{nv}}}{\gamma_{\text{M0}}}$$
$$= \frac{0.5 \cdot 530 \cdot (60 - (18 + 9)) \cdot 10}{1.25 \cdot 10^3} + \frac{1}{\sqrt{3}} \cdot 220 \cdot \frac{(240 - 4 \cdot 18) \cdot 10}{1.0 \cdot 10^3} = 70 + 175 = 245 \,\text{kN}$$

Worked example – **Fin plate connection**

Worked Example – Fin Plate connection **Shear Resistance**

Worked example – Fin plate, **Tying resistance**

Scope of the lecture

Bolts

- oGeneral
- Design resistance of individual fasteners
 - Non-preloading bolts
 - Slotted holes
- Design for block tearing
- Worked example

○ Summary

Welds

- General
 Fillet weld
 - Design model
 - Design model
 Design example
 - Welding to flexible plate
- o Summary

Column bases

- Basis of design
- Components
 - Base plate and concrete in compression
 - \circ \quad Base plate in bending and bolt in tension
 - Anchor bolt in shear
- Assembly
 - Resistance
 - Stiffness
- Classification
- Worked examples
- o Summary

Bolted connection of double angle bar

Bolts M20 class 5.6 fully treated Loading $N_{\rm Ed}$ = 400 kN

Angle net section

$$N_{u,Rd} = \frac{0.9 A_{net} f_{u}}{\gamma_{M2}} = \frac{0.9 \cdot 2 \cdot (935 - 22 \cdot 6) \cdot 360}{1,25} = 416,3 \text{ kN} > N_{Ed} = 400 \text{ kN}$$

Satisfactory

Bolted connection of double angle bar

Bolts in shear

Two shear planes Shear in bolt thread

Resistance for one bolt

$$F_{v.Rd} = 2 \frac{\alpha_v A_s f_{ub}}{\gamma_{M2}} = 2 \cdot \frac{0.6 \cdot 245 \cdot 500}{1.25} = 117.6 \text{ kN}$$

Bolted connection of double angle bar

Bearing of end bolt

$$k_{1} = \min\left(2,8 \frac{e_{2}}{d_{0}} - 1,7; 2,5\right) = \min\left(2,8 \cdot \frac{35}{22} - 1,7; 2,5\right) = \min(2,75; 2,5) \rightarrow k_{1} = 2,5$$

$$\alpha_{b} = \min\left\{\frac{\frac{e_{1}}{3 d_{0}}}{f_{u}}\right\} = \min\left\{\frac{\frac{40}{3 \cdot 22}}{500}\right\} = \min\left\{\frac{0,606}{1,389}\right\} = 0,606$$

$$I_{0} = \lim_{\lambda \to 0} \left\{\frac{1,389}{1,0}\right\} = 0,606$$

$$F_{b,Rd} = \frac{k_{1} \alpha dt f_{u}}{\gamma_{M2}} = \frac{2,5 \cdot 0,606 \cdot 20 \cdot 8 \cdot 360}{1,25} = 87,3 \text{ kN}$$

Bolted connection of double angle bar

Bearing of internal bolt

$$k_{1} = \min\left(2,8 \frac{e_{2}}{d_{0}} - 1,7; 2,5\right) = \min\left(2,8 \cdot \frac{35}{22} - 1,7; 2,5\right) = \min(2,75; 2,5) \rightarrow k_{1} = 2,5$$

$$\alpha_{b} = \min\left\{\frac{\frac{p_{1}}{3 d_{0}} - \frac{1}{4}}{\frac{f_{ub}}{f_{u}}}\right\} = \min\left\{\frac{\frac{70}{3 \cdot 22} - \frac{1}{4}}{\frac{500}{360}}\right\} = \min\left\{\frac{0,811}{1,389}\right\} = 0,811$$

$$1,0$$

$$F_{b,Rd} = \frac{2,5 \cdot 0,811 \cdot 20 \cdot 8 \cdot 360}{1,25} = 93,4 \text{ kN}$$

Bolted connection of double angle bar Check of bolts

Shear resistance	117,6 kN
Bearing resistance – end bolt	87,3 kN
Bearing resistance – internal bolt	93,4 kN

Shear is not guiding the resistance, e.g. bearing as sum For connection with five bolts

$$87,3+3.94,3+87,3=457,5$$
 kN > 400 kN = $N_{\rm Ed}$ Satisfactory

Conservatively elastic (minimal) resistance

Lower resistance from bearings

 $5 \cdot 87,3 = 436,5 \,\mathrm{kN} > 400 \,\mathrm{kN} = N_{\mathrm{Ed}}$

Unsatisfactory

Scope of the lecture

Bolts

- oGeneral
- Design resistance of individual fasteners
 - Non-preloading bolts
 - Slotted holes
- Design for block tearing
- Worked example

Summary

Welds

- General
 Fillet weld
 - Design model
 - Design model
 Design example
 - Welding to flexible plate

Summary

Column bases

- Basis of design
- Components
 - Base plate and concrete in compression
 - Base plate in bending and bolt in tension
 - Anchor bolt in shear
- Assembly
 - Resistance
 - Stiffness
- Classification
- Worked examples
- o Summary

Summary for bolted connections

- Connections made with bolts, rivets or pins in Chapter 3 of EN 1993-1-8
 - Non-preloaded bolts
 - **Preloaded bolts** preload (0,7 f_{ub})
 - Injection bolts replacement of rivets; bolts 8.8 and 10.9
 - Pins including serviceability

Future? Advanced models of bolted connections

- FEM research models
 - Validated on experiments

o FEM design models

- Verified against analytical and numerical models
- Bars and springs model
 - In tension stiffness, resistance
 - In shear contact

Eurocodes - Design of steel buildings with worked examples

Brussels, 16 - 17 October 2014

Scope of the lecture

- Assembly
 - Resistance
 - Stiffness
 - Classification
- Worked examples
- o Summary

Joint Research Centre

Welded connections in EN1993-1-8: 2005

4.1 General	38
4.2 Welding consumables	38
4.3 Geometry and dimensions	38
4.3.1 Type of weld	38
4.3.2 Fillet welds	38
4.3.3 Fillet welds all round	40
4.3.4 Butt welds	40
4.3.5 Plug welds	41
4.3.6 Flare groove welds	41
4.4 Welds with packings	41
4.5 Design resistance of a fillet weld	42
4.5.1 Length of welds	42
4.5.2 Effective throat thickness	42
4.5.3 Design Resistance of fillet welds	42
4.6 Design resistance of fillet welds all round	44
4.7 Design resistance of butt welds	45
4.7.1 Full penetration butt welds	45
4.7.2 Partial penetration butt welds	45
4.7.3 T butt joints	45
4.8 Design resistance of plug welds	45
4.9 Distribution of forces	46
4.10 Connections to unstiffened flanges	46
4.11 Long joints	48
4.12 Eccentrically loaded single fillet or single sided partial penetration butt welds	48
4.13 Angles connected by one leg	48
4.14 Welding in cold-formed zones	49

Electrode classification

EN 499 classification of carbon and low alloy steel electrodes

Eurocodes - Design of steel buildings with worked examples

Scope of the lecture

Bolts

o General

- Design resistance of individual fasteners
 - Non-preloading bolts
 - o Slotted holes
- Design for block tearing
- Worked example
- Summary

Welds

- General
- Fillet weld
 - Design model
 - Design example
 - Welding to flexible plate

Summary

Column bases

- Basis of design
- Components
 - Base plate and concrete in compression
 - Base plate in bending and bolt in tension
 - Anchor bolt in shear
- o Assembly
 - Resistance
 - Stiffness
 - Classification
- Worked examples
- o Summary

Brussels, 16 - 17 October 2014

Fillet welds – Definition of effective throat thickness *a*

The effective throat thickness of a fillet weld should not be less than 3 mm

Design Model of Fillet Welds

- *a* effective throat thickness of the fillet weld
- σ_{\perp} normal stresses perpendicular to the throat
- σ_{\parallel} normal stresses parallel to the axis of weld (omitted)
- au_{\perp} shear stresses perpendicular to the axis of weld
- τ_{\parallel} ~ shear stresses parallel to the axis of weld

 σ_{x}

e-sa

Plane Stresses

Huber-Mises-Henckey condition of plasticity (HMH) \circ Triaxial state of stress (needed exceptionally only) \circ Plane state of stress (needed very often) $\uparrow \sigma_z$

$$\sigma_x^2 + \sigma_z^2 - \sigma_x^2 \sigma_z^2 + 3\tau^2 \le (f_y / \gamma_M)^2$$

○ Uniaxial state of stress (from the material tests) $\sigma \leq f_v / \gamma_{M0}$ $\tau \leq f_v / (\gamma_{M0} \sqrt{3})$

Design Resistance of Filet Weld

$$\begin{split} \sqrt{\sigma_{\perp}^{2} + 3\left(\!\tau_{\perp}^{2} + \tau_{\mathrm{II}}^{2}\right)} &\leq f_{u}/\left(\!\beta_{w}\gamma_{Mw}\right) \\ \sigma_{\perp} &\leq f_{u}/\gamma_{Mw} \end{split}$$

 f_u Ultimate tensile strength of connected material β_w Correlation factor γ_{Mw} Partial safety factor for material of welds

Correlation factor β_{w} **for fillet welds**

	Correlation factor		
EN 10025	EN 10210	EN 10219	$m{eta}_{\sf w}$
S 235 S 235 W	S 235 H	S 235 H	0,80
S 275 S 275 N/NL S 275 M/ML	S 275 H S 275 NH/NLH	S 275 H S 275 NH/NLH S 275 MH/MLH	0,85
S 355 S 355 N/NL S 355 M/ML S 355 W	S 355 H S 355 NH/NLH	S 355 H S 355 NH/NLH S 355 MH/MLH	0,90
S 420 N/NL S 420 M/ML		S 420 MH/MLH	1,00
S 460 N/NL S 460 M/ML S 460 Q/QL/QL1	S 460 NH/NLH	S 460 NH/NLH S 460 MH/MLH	1,00

Eurocodes - Design of steel buildings with worked examples

Scope of the lecture

Bolts

- o General
- Design resistance of individual fasteners
 - Non-preloading bolts
 - o Slotted holes
- Design for block tearing
- Worked example
- Summary

Welds

- General
- Fillet weld
 - Design model
 - Design example
 - Welding to flexible plate

Summary

Column bases

- Basis of design
- Components
 - Base plate and concrete in compression
 - Base plate in bending and bolt in tension
 - Anchor bolt in shear
- o Assembly
 - Resistance
 - Stiffness
 - Classification
- Worked examples
- o Summary

Brussels, 16 - 17 October 2014

$$au_{\parallel}~=$$
 F/2 a ℓ_{\parallel}

From plane stress analysis is

Eurocodes - Design of steel buildings with worked examples

Fillet weld in normal shear

 $\tau_{II} = 0$

$$\sigma_{\perp} = \tau_{\perp} = \sigma_R \big/ \sqrt{2}$$

Has to be satisfied

$$\sqrt{\sigma_{\perp}^2 + 3\tau_{\perp}^2} \leq f_u/(\beta_w \gamma_{Mw})$$

After substitution

$$\sqrt{\left(\sigma_{\rm R}^{\prime}/\sqrt{2}\right)^2+3\left(\sigma_{\rm R}^{\prime}/\sqrt{2}\right)^2}=\sqrt{2\sigma_{\rm R}^2}\leq f_{\rm u}^{\prime}/\left(\beta_{\rm w}\gamma_{\rm Mw}\right)^2$$

Connection of cantilever

- Shear force $V_{Sd} = F_{Sd}$.
- Transferred by web fillets

Bending moment

$$M_{Sd} = F_{Sd} e$$

 $\tau_{\mu} = F_{Sd}/2 a h$

Transferred by the shape of weld

Centre of gravity, I_{we} and cross section modulus W_{we}

For weld at lower flange cross section modulus $W_{\mbox{\tiny we,1}}$ and stress is

$$\sigma_{\perp 1} = \tau_{\perp 1} = \left(M_{Sd} / \sqrt{2} \right) / W_{we,1}$$

For upper weld on flange is

$$\sigma_{\perp 2} = \tau_{\perp 2} = (M_{Sd} / \sqrt{2}) / W_{Research} / \sqrt{2} / W_{R$$

Flange - web weld

Welds are loaded by longitudinal shear force

$$V_{I} = V_{Sd} S/I$$

where V_{Sd} shear force V_{Sd}

Brussels, 16 - 17 October 2014

- S static moment of flange to neutral axis
- I moment of inertia

This longitudinal force is carried by two welds effective thickness a

Shear stress

$$\tau_{_{II}} \text{ = } V_{_{I}} \left/ 2a \leq f_{_{u}} \right/ \beta_{_{w}} \gamma_{_{Mw}} \sqrt{3}$$

Maximum stress is at the point of maximum shear force

Eurocodes - Design of steel buildings with worked examples

Scope of the lecture

Bolts

- o General
- Design resistance of individual fasteners
 - Non-preloading bolts
 - o Slotted holes
- Design for block tearing
- Worked example
- Summary

Welds

- General
- Fillet weld
 - Design model
 - Design example
 - Welding to flexible plate

Summary

Column bases

- Basis of design
- Components
 - Base plate and concrete in compression
 - Base plate in bending and bolt in tension
 - Anchor bolt in shear
- o Assembly
 - Resistance
 - Stiffness
 - Classification
- Worked examples
- o Summary

Brussels, 16 - 17 October 2014

Welds to flexible plate

Effective width of unstiffened column flanges

EN 1993-1-8 Chapter 4.10

$$b_{\text{eff}} = t_{\text{wc}} + 2 s + 7 t_{\text{fc}}$$
$$b_{\text{eff}} = t_{\text{wc}} + 2 s + 7 \left(\frac{t_{\text{fc}}^2}{t_{\text{fb}}}\right) \left(\frac{f_{\text{yc}}}{f_{\text{yb}}}\right)$$

thickness of column web thickness of column flange thickness of beam flange equal to fillet radius r_c for hot rolled column section

Effective Width

Unstiffened column flanges In EN1993-1-8 <u>Clause 6.2.4.4</u>

$$F_{t,fc,Rd} = \left(t_{wc} + 2 s + 7 k t_{fc}\right) \frac{t_{fb} f_{yb}}{\gamma_{M0}}$$
$$k = \min\left(\frac{f_{yc} t_{fc}}{f_{yb} t_{fb}}; 1\right)$$

- *t*wc is thickness of column web
- *t*_{fc} thickness of column flange
- *t*_{fb} thickness of beam flange
- *s* is equal to fillet radius *r*_c for hot rolled column sections

Eurocodes - Design of steel buildings with worked examples

Scope of the lecture

Bolts

- o General
- Design resistance of individual fasteners
 - Non-preloading bolts
 - o Slotted holes
- Design for block tearing
- Worked example
- Summary

Welds

- General
- Fillet weld
 - Design model
 - Design example
 - Welding to flexible plate

O Summary

Column bases

- Basis of design
- **Components**
 - Base plate and concrete in compression
 - Base plate in bending and bolt in tension
 - Anchor bolt in shear
- o Assembly
 - Resistance
 - Stiffness
 - Classification
- Worked examples
- o Summary

Brussels, 16 - 17 October 2014

Summary

- Chapter 4 in EN1993-1-8: 2005
 Rules for connection of open sections
- Chapter 7 in EN1993-1-8: 2005
 - Rules for connection of hollow sections
- New rules for high strength steels
- Size of welds
 - Weld design for full resistance

Weld design for full resistance Loading by normal by connecting member

Not directly in code

$$a > 0,7 \frac{\sigma t}{f_u / \gamma_{Mw}}$$

 $\sigma = F_{Sd} / (t h)$

- F_{sd} is the acting design force
- *fu* is plate design strength
- t is the thinness of connecting plate
- *b* is width of connecting plate

Full capacity of a plate the thickness for steel S235

$$a > 0,7 \frac{(f_{\gamma} / \gamma_{M0})t}{f_{u} / \gamma_{Mw}} = 0,7 \frac{(235 / 1,0)t}{360 / 1,25} = 0,47 t \approx 0,5 t$$

Weld design for full resistance Loading by <u>shear force</u> by connecting member

 $\tau = V_{\rm Sd} \,/ \,(t \,h)$

 $V_{\rm Sd}$ is the design shear force in weld

For full capacity of a plate thickness S235

$$a > 0.85 \frac{\tau t}{f_w / \gamma_{Mw}} \approx 0.85 \frac{f_y / (\sqrt{3} \gamma_{M0}) t}{f_u / \gamma_{Mw}} = 0.85 \frac{235 / (1.0 \sqrt{3}) t}{360 / 1.25} = 0.33 t \cong 0.3 t$$

Weld Design or Full Resistance of Connecting Members

Loading by normal force $\sim 0,5 t$ Loading by shear force $\sim 0,3 t$

Compare to AISC is less economical design

AISC – LRFI	AISC – LRFD – matching with SMAW		EN1993-1-8: 2005		
f_y (N/mm ²)	f_{EXX} (ksi – N/mm²)	а	Steel grade	f _{w.u.side} (N/mm²)	а
235	60 - 414 70 - 483	0,37 t 0,33 t	S235	208	0,37 t
355	70 – 483	0,49 t	S355	262	0,45 <i>t</i>
420	80 – 552	0,51 <i>t</i>	S420 M S420 N	230 240	0,61 <i>t</i> 0,58 t
485	90 – 621	0,52 <i>t</i>	S460 M S460 N	245 254	0,63 t 0,61 t

Eurocodes - Design of steel buildings with worked examples

Scope of the lecture

Bolts

- General
- Design resistance of individual fasteners
 - Non-preloading bolts
 - Slotted holes
- Design for block tearing
- Worked example
- Summary

Welds

- General
- Fillet weld
 - Design model
 - Design example
 Walding to flouible
 - Welding to flexible plate
- Summary

Column bases

- Basis of design
- Components
 - Base plate and concrete in compression
 - Base plate in bending and bolt in tension
 - Anchor bolt in shear
- \circ Assembly
 - Resistance
 - Stiffness
- Classification
- Worked examples
- Summary

Brussels, 16 - 17 October 2014

Column bases in chap. 6 of EN 1993-1-8: 2005

Unfortunately in 6 clauses

- Resistance in cl. 6.2.8, cl. 6.2.5(7)
- Stiffness in cl. 6.3.1(4)
- Classification in cl. 5.2.2.5
- Component concrete block in compression and base plate in bending in cl. 6.7(2)
- Component anchor bolt in tension and base plate in bendingin cl. 6.2.6.11(2)
- Component anchor bolt in shear **cl. 6.2.2(6)**

Component method cl. 6.2.8

Components

- Concrete block in compression and base plate in bending
- Anchor bolt in tension and base plate in bending
- Component anchor bolt in shear
- Column web and flange in compression

Background materials

Wald F., Sokol Z., Steenhuis M. and Jaspart, J.P., **Component Method for Steel Column Base**s, *Heron*. 2008, vol. 53, no. 1/2, 3-20, ISSN 0046-7316

Steenhuis M., Wald F., Sokol Z. and Stark J.W.B.,

Concrete in Compression and Base Plate in Bending, Heron. 2008, vol. 53, no. 1/2, 51-68, ISSN 0046-7316.

Wald F., Sokol Z. and Jaspart J.P.,

Base Plate in Bending and Anchor Bolts in Tension, Heron, 2008, vol. 53, no. 1/2, 21-50, ISSN 0046-7316.

Gresnight N., Romeijn A., Wald F., and Steenhuis M.,

Column Bases in Shear and Normal Force,

Heron, 2008, vol. 53, no. 1/2, 87-108, ISSN 0046-7316.

EN 1992-4 Eurocode 2:

Design of concrete structures — Part 4: Design of Fastenings for Use in Concrete

Eurocodes - Design of steel buildings with worked examples

Scope of the lecture

Bolts

- General
- Design resistance of individual fasteners
 - Non-preloading bolts
 - Slotted holes
- Design for block tearing
- Worked example
- Summary

Welds

- General
- Fillet weld
 - Design model
 - Design example
 - Welding to flexible plate
- o Summary

Column bases

- Basis of design
- Components
 - Base plate and concrete in compression
 - Base plate in bending and bolt in tension
 - Anchor bolt in shear
- Assembly
 - Resistance
 - Stiffness
- Classification
- Worked examples
- Summary

Brussels, 16 - 17 October 2014

Component

Concrete in compression and base plate in bending

Design principles

- 3D behaviour od concrete D
 - Design bearing strength of the joint f_{id}
- Flexible base plate on concrete block
 - Effective rigid area under the flexible plate A_{eff}
- Deformation of concrete block
 - Stiffness coefficient for concrete deformation under the flexible plate k_c

Wald F., Sokol Z., Steenhuis M. and Jaspart, J.P., Component Method for Steel Column Bases, *Heron* 53 (2008) 3-20.

3D behaviour

Concentrated force for at concrete resistance $F_{Rd,u}$

- Design bearing strength of joint cl. 6.2.5(7)
 - \circ Area of crushing of the concrete A_{c0}
 - According to cl. 6.7(2) in EN 1992-1-1

$$F_{\text{Rd,u}} = A_{c0} f_{cd} \sqrt{\frac{A_{c1}}{A_{c0}}} \le 3,0 A_{c0} f_{cd}$$
$$A_{c0} = b_1 d_1$$
$$A_{c1} = b_2 d_2$$
$$h \ge b_2 - b_1; h \ge d_2 - d_1$$

$$3 \cdot b_1 \ge b_2$$
 a $3 \cdot d_1 \ge d_2$

Cursing of the concrete cl. 6.7(2) in EN 1992-1-1

Concrete design strength in joint

$$f_{jd} = \frac{\beta_j F_{Rdu}}{b_{ef} I_{ef}} = \frac{\beta_j A_{c0} f_{cd} \sqrt{\frac{A_{c1}}{A_{c0}}}}{A_{c0}} = \beta_j f_{cd} \sqrt{\frac{A_{c1}}{A_{c0}}} \le \frac{3,0 A_{c0} f_{cd}}{A_{c0}} = 3,0 f_{cd}$$

- $\beta_i = 2/3$ is joint coefficient
- F_{cd} is concrete compressive strength

Flexible base plate on concrete block

- Effective rigid plate
- Elastic deformation of plate only

Elastic bending moment of the base plate per unit length is

$$M' = \frac{1}{6} t^2 \frac{f_y}{\gamma_{M0}}$$

and the bending moment per unit length on the base plate of span c and loaded by distributed load is

$$M' = \frac{1}{2} f_j c^2$$

where f_i is concrete bearing strength

Effective width of flexible plate *c*

where

t is the plate thickness

Effective width $c = t \sqrt{\frac{J_y}{3 f_{id} \gamma_{M0}}}$

- $f_{\rm v}$ is the base plate yield strength
- $f_{\rm id}$ is the design bearing strength of the joint

 γ_{M0} is the partial safety factor for concrete

Effective area

Brussels, 16 - 17 October 2014

Stiffness

Width of effective T stub a_r in elastic stage

$$a_{eq,el} = t_w + 2,5 \ t \approx a_{eq,st} =$$

= $t_w + 2 \ c = t_w + 2 \ t \sqrt{\frac{f_y}{3 \ f_{jd} \ \gamma_{M0}}}$

Validation to experiments

Influence of grout

Grout higher quality than concrete block

 β_1 = 2/3 \approx 1,0

- Grout lower quality than concrete block
 - Model as plate on liquid

$$\beta_j = 2/3$$
$$f_{c.g} \ge 0.2 f_c$$

 $t_g \le 0,2 \ min$ (a ; b) $t_g \ge 0,2 \ min$ (a ; b)

Eurocodes - Design of steel buildings with worked examples

Scope of the lecture

Bolts

- o General
- Design resistance of individual fasteners
 - Non-preloading bolts
 - Slotted holes
- Design for block tearing
- Worked example
- Summary

Welds

- General
- Fillet weld
 - Design model
 - Design example
 Wolding to flowible
 - Welding to flexible plate
- o Summary

Column bases

- Basis of design
- Components
 - Base plate and concrete in compression
 - Base plate in bending and bolt in tension
 - Anchor bolt in shear
- Assembly
 - Resistance
 - Stiffness
- Classification
- Worked examples
- Summary

Brussels, 16 - 17 October 2014

Component Anchor bolts in tension and base plate in bending

- Base plate compare to end plate
- Base plate is thicker
- Anchor bolt is longer
- $\,\circ\,$ In most cases no prying forces

Contact of edge of T stub

on experiment

Joint Research Centre

Question of contact

- End plate contact or no contact
- Base plate no contact

Failure Mode 1-2

*B*_{t.Rd} is bolt tensile resistance

 $M_{\rm pl,Rd}$ is base plate bending resistance of unique length

Free length of anchor bolt embedded in concrete

- Bolt effective free length $L_{be} = 8 d$
- No prying force
 - \circ For Q = 0
 - Limiting bolt length

Wald F., Sokol Z., Jaspart J.P.,

Base Plate in Bending and Anchor Bolts in Tension, Heron 53 (2008) 21-50.

Failure mode 1-2

Design resistance in collapse 1 -2

$$F_{\mathrm{T,1-2,Rd}} = \frac{2 M_{\mathrm{pl,1,Rd}}}{m}$$

where m is the lever arm of the anchor bolt Plastic moment resistance

$$M_{\rm pl,1,Rd} = 0,25 \, \ell_{\rm eff} \, t_f^2 \, / \, \gamma_{\rm M0}$$

For the effective length $\ell_{\rm eff}$ the yield line method may be used.

Length of effective T stub

Bolts inside the flanges

For bolts inside the section $\ell_1 = 2 \alpha m - (4 m + 1,25 e)$ $\ell_2 = 4 \pi m$

In case of prying

$$\ell_1 = 2 \alpha m - (4 m + 1,25 e)$$

 $\ell_2 = 2 \pi m$

Length of effective T stub

Bolts outside the flanges

Prying case	No prying case
$\ell_1 = 4 \alpha m_x + 1,25 e_x$	$\ell_1 = 4 \alpha m_x + 1.25 e_x$
$\theta_2 = 2 \pi m_x$	$\theta_2 = 2 \pi m_x$
$\ell_{3} = 0.5 b_{p}$	$\ell_{3} = 0.5 b_{p}$
$\ell_4 = 0.5 w + 2 m_x + 0.625 e_x$	$\ell_4 = 0.5 w + 2 m_x + 0.625 e_x$
$\ell_5 = e + 2 m_x + 0.625 e_x$	$l_5 = e + 2 m_x + 0.625 e_x$
$\ell_6 = \pi m_x + 2 e$	$\ell_{6} = 2 \pi m_{x} + 4 e$
$\ell_7 = \pi m_x + w$	$\ell_7 = 2 (\pi m_x + w)$
$\boldsymbol{\ell}_{eff,1} = \min(\boldsymbol{\ell}_1; \boldsymbol{\ell}_2; \boldsymbol{\ell}_3; \boldsymbol{\ell}_4; \boldsymbol{\ell}_5; \boldsymbol{\ell}_6; \boldsymbol{\ell}_7)$	$\boldsymbol{\ell}_{\text{eff},1}$ = min ($\boldsymbol{\ell}_1$; $\boldsymbol{\ell}_2$; $\boldsymbol{\ell}_3$; $\boldsymbol{\ell}_4$; $\boldsymbol{\ell}_5$; $\boldsymbol{\ell}_6$; $\boldsymbol{\ell}_7$)
$\boldsymbol{\ell}_{\text{eff},2} = \min(\boldsymbol{\ell}_1; \boldsymbol{\ell}_2; \boldsymbol{\ell}_3; \boldsymbol{\ell}_4; \boldsymbol{\ell}_5)$	$\boldsymbol{\ell}_{eff,2} = \min(\boldsymbol{\ell}_1; \boldsymbol{\ell}_2; \boldsymbol{\ell}_3; \boldsymbol{\ell}_4; \boldsymbol{\ell}_5)$

l

Wald F., Bouguin V., Sokol Z., Muzeau J.P., *Component Method for Base Plate of RHS*, Proceedings of the Conference Connections in Steel Structures IV: Steel Connections in the New Millenium, Roanoke 2000, IV/8- IV/816.

Heinisuo M., Perttola H., Ronni H., Joints between circular tubes, Steel Construction, 5(2) (2012) 101-107.

Stiffness coefficients

of component anchor bolts in tension and base plate in bending

For base plate of thickness t

$$k_{\rm p} = \frac{0,425\,\ell_{\rm eff}\,t^3}{m^3}$$

$$k_{\rm b} = 2.0 \frac{A_{\rm s}}{L_{\rm b}}$$

For bolt

Comparison to experiments

Stiffens and resistance of anchor bolt with header plate

Model anchor bolts for resistence in CEB documents

Eligehausen R., Mallée R., Silva J. F., Anchorage in Concrete Construction, Ernst and Sohn Verlag, Darmstadt, 2006, ISBN 978-433-01143-0

Comparison to experiments

Wald F., Sokol Z., Jaspart J.P., Base Plate in Bending and Anchor Bolts in Tension, *Heron* 53 (2008) 21-50.

Eurocodes - Design of steel buildings with worked examples

Scope of the lecture

Bolts

- o General
- Design resistance of individual fasteners
 - Non-preloading bolts
 - Slotted holes
- Design for block tearing
- Worked example
- Summary

Welds

- General
- Fillet weld
 - Design model
 - Design example
 - Welding to flexible plate
- o Summary

Column bases

- Basis of design
- Components
 - Base plate and concrete in compression
 - Base plate in bending and bolt in tension
 - > Anchor bolt in shear
- Assembly
 - Resistance
 - Stiffness
- Classification
- Worked examples
- Summary

Brussels, 16 - 17 October 2014

Components in Shear

Joint Research Centre

In EN1993-1-8 cl. 6.2.2(6) - Anchor Bolt in Shear

where f_{ub} is bolt design strength (in range 640 MPa $\ge f_{ub} \ge 235$ N/mm²) $\alpha_{b} = 0.44 - 0.0003 f_{yb}$ γ_{Mb} is safety factor for bolts

Gresnigt N., Romeijn A., Wald F., Steenhuis M., Column Bases in Shear and Normal Force, *Heron* (2008) 87-108.

Eurocodes - Design of steel buildings with worked examples

Scope of the lecture

Bolts

- General
- Design resistance of individual fasteners
 - Non-preloading bolts
 - Slotted holes
- Design for block tearing
- Worked example
- Summary

Welds

- General
- Fillet weld
 - Design model
 - Design example
 - Welding to flexible plate
- o Summary

Column bases

- Basis of design
- Components
 - Base plate and concrete in compression
 - Base plate in bending and bolt in tension
 - Anchor bolt in shear
- Assembly
 - Resistance
 - Stiffness
- Classification
- Worked examples
- Summary

Brussels, 16 - 17 October 2014

Assembling of components for bending resistance

- Plastic design
- Force equilibrium

$$\frac{M_{\rm Ed}}{z} - \frac{N_{\rm Ed} z_{\rm c,r}}{z} = F_{\rm t,l,Rd}$$
$$\frac{M_{\rm Ed}}{z} + \frac{N_{\rm Ed} z_{\rm T,1}}{z} = F_{\rm C,R,Rd}$$

Wald F., Sokol Z., Steenhuis M. and Jaspart J.P.,

Component Method for Steel Column Bases, Heron 53 (2008) 3-20.

M - N interaction diagram

Eurocodes - Design of steel buildings with worked examples

Scope of the lecture

Bolts

- General
- Design resistance of individual fasteners
 - Non-preloading bolts
 - Slotted holes
- Design for block tearing
- Worked example
- Summary

Welds

- General
- Fillet weld
 - Design model
 - Design example
 - Welding to flexible plate
- o Summary

Column bases

- Basis of design
- Components
 - Base plate and concrete in compression
 - Base plate in bending and bolt in tension
 - Anchor bolt in shear
- Assembly
 - Resistance
 - Stiffness
- Classification
- Worked examples
- Summary

Brussels, 16 - 17 October 2014

Assembling of components for bending stiffness

From the component deformation stiffness for two cases

- Bolts activated
- Bolts not activated

Wald F., Sokol Z., Steenhuis M. and Jaspart, J.P., Component Method for Steel Column Bases, Heron 53 (2008) 3-20.

Stiffness

Simplified contact area round the axes of compressed flange

History of loading

- Influence to stiffness
- No influence to resistance

Sensitivity study of **base plate thickness**

Validation on experiment

Wald F., Sokol Z., Jaspart J.P.,

Base Plate in Bending and Anchor Bolts in Tension, Heron 53 (2008) 21-50.

Validation on experiment

Proportional loading, bolt failure

Nonproportional loading, concrete failure

Eurocodes - Design of steel buildings with worked examples

Scope of the lecture

Bolts

- General
- Design resistance of individual fasteners
 - Non-preloading bolts
 - Slotted holes
- Design for block tearing
- Worked example
- Summary

Welds

- General
- Fillet weld
 - Design model
 - Design example
 - Welding to flexible plate
- o Summary

Column bases

- Basis of design
- Components
 - Base plate and concrete in compression
 - Base plate in bending and bolt in tension
 - Anchor bolt in shear
- Assembly
 - Resistance
 - Stiffness
- Classification
- Worked examples
- Summary

Classification

According to stiffness

Asked <u>accuracy</u> of design <u>5% in resistance</u> <u>10% in serviceability</u>

Similar to beam-to-column joints

Wald F., Sokol Z., Steenhuis M. and Jaspart, J.P., Component Method for Steel Column Bases, Heron 53 (2008) 3-20.

Non-sway frames by resistance

Sway frames for serviceability

Classification based on stiffness

Accuracy - 5% for resistance and 20% for serviceability

Non-sway frames by resistance

For $\overline{\lambda}_{o} \leq 0,5$ $S_{j,ini} \geq 0$ For $0,5 < \frac{\overline{\lambda}_{o}}{\overline{\lambda}_{o}} < 3,93$ $S_{j,ini} \geq 7 (2 - 1) E I_{c} / L_{c}$ and for $\overline{\lambda}_{o} \geq 3,93$ $S_{j,ini} \geq 48 E I_{c} / L_{c}$ where is relative stiffness for simple supported column at both ends For limited stiffness $12 E I_{c} / L_{c}$

For sway frames $S_{j,ini} \ge 30 E I_c / L_c$

Eurocodes - Design of steel buildings with worked examples

Scope of the lecture

Bolts

- General
- Design resistance of individual fasteners
 - Non-preloading bolts
 - Slotted holes
- Design for block tearing
- Worked example
- Summary

Welds

- General
- Fillet weld
 - Design model
 - Design example
 - Welding to flexible plate
- o Summary

Column bases

- Basis of design
- Components
 - Base plate and concrete in compression
 - Base plate in bending and bolt in tension
 - Anchor bolt in shear
- Assembly
 - Resistance
 - Stiffness
- \circ Classification
- Worked examples
- Summary

Brussels, 16 - 17 October 2014

Worked example – Simple base plate

Base plate resistance?

- o Column HE 200 B
- Concrete block 850 x 850 x 900 mm concrete C 12/15
- Base plate 18 mm, steel S 235

Concrete strength in joint

Under the base plate

$$f_{jd} = \beta_j f_{cd} \sqrt{\frac{A_{c1}}{A_{c0}}} = \beta_j \cdot f_{cd} \sqrt{\frac{b_2 d_2}{b_1 d_1}} = \frac{2}{3} \frac{12}{1,5} \sqrt{\frac{850 \cdot 850}{340 \cdot 340}} = \frac{2}{3} \frac{12}{1,5} \sqrt{\frac{850 \cdot 850}{340 \cdot 340}} = \frac{1}{3} \frac{1}{1,5} \sqrt{\frac{850 \cdot 850}{340}} = \frac{1}{1,5} \sqrt{\frac{850 \cdot 850}{340}} = \frac{1}{1,5} \sqrt{$$

$$f_{\rm jd} = = 13,3 \,\mathrm{MPa} \le 3,0 \cdot f_{\rm cd} = 3,0 \cdot 12/1,5 = 24 \,\mathrm{MPa}$$

Plate effective width

С

 $t_w = 9$

*t*_{*⊾*}=15

С

 $h_c = 200$

С

Brussels, 16 - 17 October 2014

Base plate compression resistance

Effective area under I cross section

$$A_{\rm eff} = \min(b; b_{\rm c} + 2c) \cdot \min(a; h_{\rm f} + 2c) - \max[\min(b; b_{\rm c} + 2c) - t_{\rm f} - 2c; 0] \cdot \max(h_{\rm c} - 2t_{\rm f} - 2c; 0)$$

$$A_{\text{eff}} = (200 + 2 \cdot 43,7) \cdot (200 + 2 \cdot 43,7) - (200 + 2 \cdot 43,7) - (200 + 2 \cdot 43,7 - 9 - 2 \cdot 43,7) \cdot (200 - 2 \cdot 15 - 2 \cdot 43,7) = 82599 - 15777 = 66722 \,\text{mm}^2$$

The base plate resistance

$$N_{\rm Rd} = A_{\rm eff} f_{\rm jd} = 66\ 722 \cdot 13,3 = 887 \cdot 10^3 \ {\rm N}$$

Work example – rigid base plate

Bending resistance of base plate?

- Column HE 200 B loaded by $F_{\rm Ed}$ = 500 kN
- Concrete block C16/20 of 1 600 x 1 600 x 1000 mm
- Base plate 30 mm from steel S235
- $\gamma_{\rm c} =$ 1,50; $\gamma_{\rm M0} =$ 1,00 and $\gamma_{\rm Mb} =$ 1,25

Component Anchor bolt and plate in bending

Bolt resistance

for M 24; $A_s = 253 \text{ mm}^2$

$$F_{T,3,Rd} = 2 B_{t,Rd} = 2 \cdot \frac{0.9 f_{ub} A_s}{\gamma_{mb}} =$$
$$= 2 \cdot \frac{0.9 \cdot 360 \cdot 353}{1.25} = 183.0 \cdot 10^3 N$$

Component anchor bolt and plate in bending Bolt distance for weld 6 mm

$$m = 60 - 0.8 \cdot a_{wf} \cdot \sqrt{2} = 60 - 0.8 \cdot 6 \cdot \sqrt{2} = 53.2 \text{ mm}$$

Length of effective T stub

T stub

$$\ell_{eff,1} = \min \begin{cases} 4 \ m + 1,25 \ e_a = 4 \cdot 53,2 + 1,25 \cdot 50 = 275,3 \\ 4 \ \pi \ m = 4 \ \pi \ 53,2 = 668,6 \\ 0,5 \ b = 0,5 \cdot 420 = \underline{210} \\ 2 \ m + 0,625 \ e_b + 0,5p = 2 \cdot 53,2 + 0,625 \cdot 90 + 0,5 \cdot 240 = 282,7 \\ 2 \ m + 0,625 \ e_b + e_a = 2 \cdot 53,2 + 0,625 \cdot 90 + 50 = 212,7 \\ 2 \ \pi \ m + 4 \ e_b = 2 \ \pi \ 53,2 + 4 \cdot 90 = 694,2 \\ 2 \ \pi \ m + 2 \ p = 2 \ \pi \ 53,2 + 2 \cdot 240 = 814,2 \end{cases} \\ \ell_{eff,1} = 210 \ \text{mm}$$
resistance $F_{T,12,Rd} = \frac{2 \ L_{eff,1} \ t^2 f_y}{4 \ m \ \gamma_{M0}} = \frac{2 \cdot 210 \cdot 30^2 \cdot 235}{4 \cdot 60 \cdot 1,00} = 370,0 \cdot 10^3 \text{N}$

Component Concrete block and plate in bending

Concrete crushing resistance

$$f_{jd} = \beta_j f_{cd} \sqrt{\frac{A_{c1}}{A_{c0}}} = \beta_j \cdot f_{cd} \sqrt{\frac{b_2 d_2}{b_1 d_1}} = \frac{2}{3} 16/1.5 \sqrt{\frac{1420 \cdot 1420}{420 \cdot 420}} =$$

$$=$$
 24,0 MPa \leq 3,0 \cdot f_{cd} $=$ 3,0 \cdot 16 / 1,5 $=$ 32 MPa

Force equilibrium

$$F_{\rm Ed} = A_{\rm eff} f_{\rm j} - F_{\rm T,Rd}$$

Contact force for full bolt resistance

$$A_{\rm eff} = \frac{F_{\rm Ed} + F_{\rm Rd,3}}{f_{\rm jd}} = \frac{500 \cdot 10^3 + 183,0 \cdot 10^3}{24,0} = 28 \ 458 \,\rm mm^2$$

Effective width of base plate

The effective width of the area in contact

 $b_{\text{eff}} = \frac{A_{\text{eff}}}{b_{\text{c}} + 2c} = \frac{28 \ 458}{200 + 2 \cdot 54,2} = 92,3 \text{ mm} < t_{\text{f}} + 2c = 15 + 2 \cdot 54,2 = 123,4 \text{ mm}$

Bending moment resistance for acting normal force

Lever arm

$$r_{\rm c} = \frac{h_{\rm c}}{2} + c - \frac{b_{\rm eff}}{2} = \frac{200}{2} + 54,2 - \frac{92,3}{2} = 108,1\,{\rm mm}$$

Bending resistancefor normal force $F_{Ed} = 500 \text{ kN}$

$$M_{\rm Rd} = F_{\rm T,3,Rd} r_{\rm b} + A_{\rm eff} f_{\rm jd} r_{\rm c}$$

= 183,0 \cdot 10³ \cdot 160 + 28458 \cdot 24,0 \cdot 108,1 =
= 103,1 \cdot 10⁶ Nmm = 103,1 kNm

Bending stiffness

Stiffness coefficient

• Anchor bolt

$$k_{\rm b} = 2,0 \ \frac{A_{\rm s}}{L_{\rm b}} = 2,0 \ \frac{353}{261,5} = 2,7 \ {\rm mm}$$

• Base plate

$$k_{\rm b} = \frac{0,425 \ L_{\rm b,eff} \ t^3}{m^3} = \frac{0,425 \cdot 210 \cdot 30^3}{53,2^3} = 16,0 \ {\rm mm}$$

Bending stiffness

Stiffness coefficient

$$k_{\rm c} = \frac{E_{\rm c}}{1,275 \ E_{\rm s}} \sqrt{a_{\rm eq} \ b_{\rm c}} = \frac{27500}{1,275 \cdot 210000} \sqrt{90 \cdot 200} = 13,8 \ {\rm mm}$$

Lever arm in tension z_t and in compression z_c to column neutral axes

$$r_{\rm t} = \frac{h_{\rm c}}{2} + e_{\rm c} = \frac{200}{2} + 60 = 160 \,{\rm mm}$$

For part in tension

$$z_{c} = \frac{h_{c}}{2} - \frac{t_{f}}{2} = \frac{200}{2} - \frac{15}{2} = 92,5 \,\mathrm{mm}$$
$$k_{t} = \frac{1}{\frac{1}{k_{b}} + \frac{1}{k_{p}}} = \frac{1}{\frac{1}{2,7} + \frac{1}{16,0}} = 2,310 \,\mathrm{mm}$$

Bending stiffness

$$r = r_{\rm t} + r_{\rm c} = 160 + 92,5 = 252,5 \,{\rm mm}$$

$$a = \frac{k_{\rm c} r_{\rm c} - k_{\rm t} r_{\rm t}}{k_{\rm c} + k_{\rm t}} = \frac{13,8 \cdot 92,5 - 2,3 \cdot 160}{13,8 + 2,3} = 56,4 \,\rm{mm}$$

Eccentricity
$$e = -$$

$$e = \frac{M_{\rm Rd}}{F_{\rm Ed}} = \frac{103,1\cdot10^6}{500\cdot10^3} = 206,2 \,\mathrm{mm}$$

Bending stiffness

$$S_{j,ini} = \frac{e}{e+a} \frac{E_s r^2}{\mu \sum_i \frac{1}{k_i}} = \frac{206,2}{206,2+56,4} \cdot \frac{210\,000 \cdot 252,5^2}{1 \cdot \left(\frac{1}{2,31} + \frac{1}{13,78}\right)} = 20,799 \,\text{Nmm/rad} = 20\,799 \,\text{Nmm/rad}$$

Classification

Bending stiffness for column HE 200 B of length $L_c = 4,0$ m

$$\overline{S}_{j,ini} = S_{j,ini} \frac{L_c}{E_s I_c} = 20,799 \cdot 10^9 \frac{4000}{210000 \cdot 56,96 \cdot 10^6} = 6,96$$

the base plate is **semi-rigid** for braced frames $\overline{S}_{j,ini} = 6,96 < 12 = \overline{S}_{j,ini,EC3,n}$

and also for unbraced frames $\overline{S}_{j,ini} = 6,96 < 30 = \overline{S}_{j,ini,EC3,s}$ $M_j / M_{pl,Rd}$ Rigid 0,8 0,6 0,4 0,2 0,2 0,2 0,2 0,3 0,4 0,2 0,4 0,2 0,4 0,2 0,4 0,2 0,4 0,2 0,4 0,2 0,4 0,2 0,4 0,4 0,2 0,4 0,4 0,4 0,2 0,4

Base plate M-N interaction diagram

Influence of contact in column web

Eurocodes - Design of steel buildings with worked examples

Scope of the lecture

Bolts

- General
- Design resistance of individual fasteners
 - Non-preloading bolts
 - Slotted holes
- Design for block tearing
- Worked example
- Summary

Welds

- General
- Fillet weld
 - Design model
 - Design example
 - Welding to flexible plate
- o Summary

Column bases

- Basis of design
- Components
 - Base plate and concrete in compression
 - Base plate in bending and bolt in tension
 - Anchor bolt in shear
- Assembly
 - Resistance
 - Stiffness
- Classification
- Worked examples
- Summary

Summary

- Component method
 - Good accuracy of prediction
- In EN 1993-1-8 in 6 closures
- Plastic distribution of forces for resistance
 - Concrete 3D strength
 - Effective rigid area under flexible base plate
- Questions for next edition
 - o Embedded columns?
 - o Column bases with base plate and anchor plate?
 - o Advanced models?

Component based model of column base with base plate and anchor plate

RFCS project INFASO⁺

- Design Manual I
- Design Manual II
- Software toll

http://www.steelconstruct.com/site http://steel.fsv.cvut.cz/infaso

Component based FEM

Advanced design model based on FEM
 Components integrated FEM

- \circ Welds
- o Bolts
- Compressed plates

Allows for column bases

- Generally loaded by N and M_{y} , M_{z}
- Irregular shape of base plate
- Arbitrary positions of anchors
- Opening in column web

Eurocodes Background and Applications

Design of **Steel Buildings**

with worked examples

Thank you for your attention

16-17 October 2014 Brussels, Belgium

František Wald Czech Technical University in Prague

Organised and supported by

European Commission DG Enterprise and Industry Joint Research Centre European Convention for Constructional Steelwork European Committee for Standardization CEN/TC250/SC3

Joint Research Centre