

Fire resistance assessment of Composite structures

Basic design methods Worked examples

CAJOT Louis-Guy

Chairman of CEN/TC250/SC4/EG - Fire Part

ArcelorMittal

The Building (R+5)

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

Composite slab, composite beams, composite columns

- Actions (for all floor levels)
- ⇒ Self weight G1
 - ✓Composite slab unit weight : 2.12 kN/m²
 - ✓ Steel structural members
- ⇒ Permanent load G2
 - Finishing, embedded services, partitions : 1.50 kN/m²
- ⇒ Façade G3 : 2 kN/m
- \Rightarrow Characteristic values of variable loads and ψ factors

Туре	q _k	Ψ1	Ψ2
Live load on floors	4.0 kN/m ²	0.7	0.6
Snow on roof	1.7 kN/m²	0.2	0.0

Structural members

- ⇒ Composite slab
 - ✓ Total thickness: 12 cm
 - ✓ Steel deck: COFRAPLUS60
 - ✓ Thickness of steel deck: 0.75 mm
 - ✓ Continuous slab over 2 spans
- ⇒ Secondary beams
 - ✓ IPE450 linked with headed studs to the composite slab; fire protected steel sections
 - ✓ Alternative : Partially encased composite beams IPE450; fire protection obtained through partial encasement
- ⇒ Columns for ground level
 - ✓ Facade columns: Partially encased HEA260
 - ✓ Alternative: Fully encased HEB160

Composite slab, composite beams, composite columns

Structure grid of the composite building

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

Summary of data

Required fire resistance : R60

Material characteristics

Steel decking :	f _y = 350 N/mm²
Concrete :	C25/30 ; f _c = 25 N/mm²
Rebars :	f _y = 500 N/mm²
	Mesh ST25 ; A = 2,57 cm²/m
	Ribs : 1
Loads	

Permanent loads:

Steel decking : Concrete : Permanent load : <u>Variable load</u>:

Variable load :

 $g_{t,k} = 0,085 \text{ kN/m}^2$ $g_{b,k} = 2,03 \text{ kN/m}^2$ $g_{c,k} = 1,5 \text{ kN/m}^2$

 $q_{k} = 4,0 \text{ kN/m}^{2}$

European Commission

Geometric parameters

Application field

Trapezoidal steel decking profiles [mm]	Existing geometric parameters [mm]	Condition fulfilled ?
$80 \le \ell_1 \le 155$	$\ell_1 = 101$	OK
$32 \le \ell_2 \le 132$	$\ell_2 = 62$	OK
$40 \le \ell_3 \le 115$	$\ell_3 = 106$	OK
$50 \le h_1 \le 125$	h ₁ = 62	OK
$50 \le h_2 \le 100$	$h_2 = 58$	OK

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

Fire resistance according to thermal insulation

$$t_i = a_0 + a_1 \cdot \dot{h_1} + a_2 \cdot \Phi + a_3 \cdot \frac{A}{L_r} + a_4 \cdot \frac{1}{\ell_3} + a_5 \cdot \frac{A}{L_r} \cdot \frac{1}{\ell_3}$$

$$t_{i} = (-28,8) + 1,55 \cdot h_{1}' + (-12,6) \cdot \Phi + 0,33 \cdot \frac{A}{L_{r}} + (-735) \cdot \frac{1}{\ell_{3}} + 48 \cdot \frac{A}{L_{r}} \cdot \frac{1}{\ell_{3}}$$

For Normal Weight Concrete

a ₀	a ₁	a ₂	a ₃	a ₄	<i>a</i> ₅
[min]	[min/mm]	[min]	[min/mm]	mm min	[min]
-28,8	1,55	-12,6	0,33	-735	

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

Fire resistance according to thermal insulation

$$t_{i} = a_{0} + a_{1} \cdot h_{1}^{'} + a_{2} \cdot \Phi + a_{3} \cdot \frac{A}{L_{r}} + a_{4} \cdot \frac{1}{\ell_{3}} + a_{5} \cdot \frac{A}{L_{r}} \cdot \frac{1}{\ell_{3}}$$

$$t_i = (-28,8) + 1,55 \cdot \underline{62} + (-12,6) \cdot \Phi + 0,33 \cdot \frac{A}{L_r} + (-735) \cdot \frac{1}{\underline{106}} + 48 \cdot \frac{A}{L_r} \cdot \frac{1}{\underline{106}}$$

 $\dot{h_1} = h_1 + h_3 = 62 \text{ mm}$ (h_3 = thickness of the screed)

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

Fire resistance according to thermal insulation

$$t_i = a_0 + a_1 \cdot \dot{h_1} + a_2 \cdot \Phi + a_3 \cdot \frac{A}{L_r} + a_4 \cdot \frac{1}{\ell_3} + a_5 \cdot \frac{A}{L_r} \cdot \frac{1}{\ell_3}$$

$$t_{i} = (-28,8) + 1,55 \cdot 62 + (-12,6) \cdot \Phi + 0,33 \cdot 25,6 + (-735) \cdot \frac{1}{106} + 48 \cdot 25,6 \cdot \frac{1}{106}$$

Rib geometry factor

$$\frac{A}{L_{r}} = \frac{h_{2} \cdot \left(\frac{\ell_{1} + \ell_{2}}{2}\right)}{\ell_{2} + 2 \cdot \sqrt{h_{2}^{2} + \left(\frac{\ell_{1} - \ell_{2}}{2}\right)^{2}}} = 25,6 \,\text{mm}$$

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

Fire resistance according to thermal insulation

$$t_i = a_0 + a_1 \cdot \dot{h_1} + a_2 \cdot \Phi + a_3 \cdot \frac{A}{L_r} + a_4 \cdot \frac{1}{\ell_3} + a_5 \cdot \frac{A}{L_r} \cdot \frac{1}{\ell_3}$$

 $t_i = (-28,8) + 1,55 \cdot 62 + (-12,6) \cdot \underbrace{0,727}_{+0,33} \cdot 25,6 + (-735) \cdot \frac{1}{106} + 48 \cdot 25,6 \cdot \frac{1}{106}$

View factor

$$\Phi = \left[\sqrt{h_2^2 + \left(\ell_3 + \frac{\ell_1 - \ell_2}{2}\right)^2} - \sqrt{h_2^2 + \left(\frac{\ell_1 - \ell_2}{2}\right)^2}\right] / \ell_3 = 0,727$$

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

Simplified method (EN1994-1-2/Annex D/§D.4)

For
$$h_2/h_1 \le 1,5$$
 and $h_1 > 40$ mm
 $h_{eff} = h_1 + 0,5 \cdot h_2 \cdot \left(\frac{\ell_1 + \ell_2}{\ell_1 + \ell_3}\right) = 62 + 0,5 \cdot 58 \cdot \left(\frac{101 + 62}{101 + 106}\right) = 85$ mm
 $h_1 = 62$ mm
 $h_2 = 58$ mm
 $\ell_1 = 101$ mm
 $\ell_2 = 62$ mm
 $\ell_3 = 106$ mm

Minimal effective thickness of the slab h_{eff} to satisfy the thermal insulation criteria

Standard fire
resistance
$$h_{eff}$$

[mm]I 30 $60-h_3$
 $80-h_3$ I 60 $80-h_3$
 190 I 90 $100-h_3$
 $100-h_3$ I 120 $120-h_3$
 $150-h_3$ I 180 $150-h_3$
 $175-h_3$

European Commission

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

Temperature evolution in the section as a function of the time

Diamond 2004 for SAFIR

FILE: temp-Dalle3-30cvL

TEMPERATURE PLOT

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

Calculation of the sagging moment resistance M⁺_{fi,t,Rd}

Temperature distribution in the steel decking : $\theta_a = b_0 + b_1 \cdot \frac{1}{\ell_3} + b_2 \cdot \frac{A}{L_r} + b_3 \cdot \Phi + b_4 \cdot \Phi^2$

Concrete	Fire resistance [min]	Part of the Steel decking	<i>b</i> ₀ [°C]	b ₁ [°C⋅mm]	<i>b</i> ₂ [°C/mm]	<i>b</i> ₃ [°C]	<i>b</i> 4 [°C]	$\overset{1}{\longleftarrow} \overset{1}{\longleftarrow} \overset{\ell_1 = 101}{\longleftarrow} \overset{1}{\longleftarrow} \overset{\ell_2 \ell_3 = 52}{\longleftarrow} \overset{52}{\longleftarrow} \overset{\ell_1 = 101}{\longrightarrow} \overset{1}{\longleftarrow} \overset{\ell_2 \ell_3 = 52}{\longleftarrow} \overset{52}{\longrightarrow} \overset{1}{\longrightarrow} \overset{1}{\overset{1}{\longrightarrow} \overset{1}{\longrightarrow} \overset{1}{\overset{1}{\longrightarrow} \overset{1}{\overset}{\overset{1}{\overset{1}{$
		Lower flange	951	-1197	-2.32	86.4	-150.7	h ₃ =0
	60	Web	661	-833	-2.96	537.7	-351.9	↓
		Upper flange	340	-3269	-2.62	1148.4	-679.8	h ₁ =62
		Lower flange	1018	-839	-1.55	65.1	-108.1	
Normal Concrete	90	Web	816	-959	-2.21	464.9	-340.2	
		Upper flange	618	-2786	-1.79	767.9	-472.0	h=58
	120	Lower flange	1063	-679	-1.13	46.7	-82.8	•
		Web	925	-949	-1.82	344.2	-267.4	\checkmark
		Upper flange	770	-2460	-1.67	592.6	-379.0	$\ell_2 = 62$

For the different parts of the steel decking, the temperatures at 60 minutes are :

Upper Flange
$$\theta_a = 951 - 1197 \cdot \frac{1}{106} - 2,32 \cdot 25,6 + 86,4 \cdot 0,727 - 150,7 \cdot 0,727^2 = 863 °C$$
Web $\theta_a = 661 - 833 \cdot \frac{1}{106} - 2,96 \cdot 25,6 + 537,7 \cdot 0,727 - 351,9 \cdot 0,727^2 = 782 °C$ Lower Flange $\theta_a = 340 - 3269 \cdot \frac{1}{106} - 2,62 \cdot 25,6 + 1148,4 \cdot 0,727 - 679,8 \cdot 0,727^2 = 718 °C$

European Commission

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

Temperature of the reinforcing bar in the rib :

 $\theta_{s} = C_{0} + C_{1} \cdot \frac{u_{3}}{h_{2}} + C_{2} \cdot z + C_{3} \cdot \frac{A}{L_{r}} + C_{4} \cdot \alpha + C_{5} \cdot \frac{1}{\ell_{3}}$

with

n
$$\frac{1}{z} = \frac{1}{\sqrt{u_1}} + \frac{1}{\sqrt{u_2}} + \frac{1}{\sqrt{u_3}} = \frac{1}{\sqrt{35,8}} + \frac{1}{\sqrt{35,8}} + \frac{1}{\sqrt{20}}$$

 \rightarrow z = 1,79 mm^{0,5}

Concrete	Fire resistance [min]	с ₀ [°С]	с ₁ [°С]	c₂ [°C/mm ^{0.5}]	c₃ [°C/mm]	c₄ [°C/°]	<i>c</i> ₅ [°C]
	60	1191	-250	-240	-5.01	1.04	-925
Normal Concrete	90	1342	-256	-235	-5.30	1.39	-1267
	120	1387	-238	-227	-4.79	1.68	-1326

- u₁ = 35,8mm
- $u_2 = 35,8mm$
- u₃ = 20mm
- (axis distances)

 $\theta_{s} = 1191 - 250 \cdot \frac{20}{58} - 240 \cdot 1,79 - 5,01 \cdot 25,6 + 1,04 \cdot 71,4 - 925 \cdot \frac{1}{106} = 612 \,^{\circ}\text{C}$

Bearing capacity of the different parts of the steel decking and the reinforcing bar :

	Temperature θ _i [°C]	Reduction factor k _{y,i} [-]	Partial area A _i [cm²]	f _{y,i,θ} [kN/cm²]	<i>F_i</i> [kN]
Lower flange	863	0,078	0,465	2,74	1,274
Web	782	0,131	0,918	4,60	4,221
Upper flange	718	0,209	0,795	7,31	5,813
Rebar in the rib	612	0,367	0,503	18,34	9,22

Positive moment of the composite slab

Determination of the plastic neutral axis :

Determination of the positive moment resistance of the composite slab :

	<i>F_i</i> [kN]	z _i [cm]	<i>M_i</i> [kNcm]
Lower flange	1,274	11,96	15,245
Web	4,221	9,10	38,410
Upper flange	5,813	6,16	35,820
Reinforcing bar in the rib	9,22	10,0	92,196
Concrete	-20,527	0,23	-4,79

for a rib width of 207mm,

 $\sum M_i = 176,9 kNcm$

Than, for a slab width equal to 1m,

$$M_{fi,Rd}^{+} = \frac{\sum M_i}{rib \ width} = \frac{1,769}{0,207} = 8,5 \,kNm/m$$

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

Calculation of the hogging moment resistance M_{fi,t,Rd}

The hogging moment resistance of the slab is calculated by considering a reduced cross section established on the basis of the isotherm for the limit temperature θ_{lim} schematised by means of 4 characteristic points.

$$\theta_{\text{lim}} = d_0 + d_1 \cdot N_s + d_2 \cdot \frac{A}{L_r} + d_3 \cdot \Phi + d_4 \cdot \frac{1}{\ell_3}$$
 (N_s = 26,6 kN is the normal force in the upper reinforcing bar)

	Fire resistance [min]	d₀ [° C]	d₁ [° C].N	<i>d</i> ₂ [° C].mm	d₃ [° C]	<i>d</i> 4 [° C].mm
	60	867	-1,9.10 ⁻⁴	-8,75	-123	-1378
Normal weight	90	1055	-2,2.10 ⁻⁴	-9,91	-154	-1990
	120	1144	-2,2.10 ⁻⁴	-9,71	-166	-2155

 $\theta_{\text{lim}} = 867 - 1.9 \cdot 10^{-4} \cdot 26600 - 8.75 \cdot 25.6 - 123 \cdot 0.727 - 1378 \cdot \frac{1}{106} = 535^{\circ}\text{C}$

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

Determination of the points of the isotherm :

The parameter z of the formula D.9 is obtained from the equation for the determination of the temperature of the reinforcing bar, assuming that $u_3/h_2 = 0.75$ and $\theta_s = \theta_{lim}$

$$\theta_{\text{lim}} = c_0 + c_1 \cdot \frac{u_3}{h_2} + c_2 \cdot z + c_3 \cdot \frac{A}{L_r} + c_4 \cdot \alpha + c_5 \cdot \frac{1}{\ell_3}$$

$$\Rightarrow z = \frac{\theta_{\text{lim}} - c_0 - 0.75 \cdot c_1 - 25.6 \cdot c_3 - 71.4 \cdot c_4 - c_5 \cdot \frac{1}{106}}{c_2} = \frac{535 - 1191 + 0.75 \cdot 250 + 25.6 \cdot 5.01 - 71.4 \cdot 1.04 + 925 \cdot \frac{1}{106}}{(-240)} = 1.69 \,\text{mm}^{0.5}$$

Coordinates of the points of the isotherm :

The coordinates of the 4 characteristic points are determined by the following formulae :

European

Commission

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

The horizontal equilibrium gives :

$$\sum F_{i} = \left(\frac{1}{tg\beta} \cdot z_{pl}^{2} + 47, 4 \cdot z_{pl}\right) \cdot 0,85 \cdot f_{c}$$

=> z_{pl} = 22,35mm

24

Moment resistance of each part of the rib :

	F _i [kN]	<i>z_i</i> [cm]	<i>M_i</i> [kNcm]
Mesh ST25	26,60	8,9	239,01
Concrete rib	-26,60	4,5	-120,32

The negative moment resistance of the composite slab, for a rib width of 207mm is given by :

$$\sum M_i = 118,7 \, kNcm$$

Than, for a slab width equal to 1m,

$$M_{fi,Rd}^{-} = \frac{\sum M_i}{\text{rib width}} = \frac{1,187}{0,207} = 5,734 \,\text{kNm}\,\text{/m}$$

Bearing capacity of the continuous slab

The applied load is :

 $E_{fi,d} = G_k + \psi_{1,1} Q_{k,1}$ $p_{fi,d} = 1,0 * (0,085 + 2,03 + 1,5) + 0,6 * 4 = 6,02 \text{ kN/m}^2$

For a slab width equal to 1m, the bearing capacity may be deduced from the sagging and hogging moment by the following relation :

$$p_{fi,Rd} = \frac{2M_{fi,Rd}^{-} + 4M_{fi,Rd}^{+}}{\ell^{2}} + \frac{2}{\ell^{2}} \cdot \sqrt{\left(M_{fi,Rd}^{-} + 2M_{fi,Rd}^{+}\right)^{2} - M_{fi,Rd}^{-}}^{2}}$$

$$p_{fi,Rd} = \frac{2 \cdot 5,734 + 4 \cdot 8,5}{3^{2}} + \frac{2}{3^{2}} \cdot \sqrt{\left(5,734 + 2 \cdot 8,5\right)^{2} - 5,734^{2}}}{p_{fi,Rd}}$$

$$p_{fi,Rd} = 9,98 \text{ kN/m}^{2} \qquad > \qquad p_{fi,d} = 6,02 \text{ kN/m}^{2}$$

The continuous slab has a fire resistance of 60 minutes

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

Bearing capacity of the continuous slab : Simplified formula

European Commission

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

28

Structure grid of the composite building

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

<u>Data</u>

- ➡ Composite beam on 2 supports
- ➡ Continuous slab on 3 supports
- ⇒ Beam span = 14m
- \Rightarrow Distance between beams = 3m
- ⇒ Required fire resistance R60

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

Geometrical characteristics and material properties

Beam :	IPE450	
	h = 450 mm	<
	b = b ₁ = b ₂ = 190 mm	h _c
	e _w = 9,4 mm	
	$e_{f} = e_{1} = e_{2} = 14,6 \text{ mm}$	h
	f _y = 355 N/mm²	
Steel decking :	f _y = 350 N/mm²	
Concrete :	h _c = 120 mm	

 $b_{eff} = 3000 \text{ mm}$

C25/30 $f_{c} = 25 \text{ N/mm}^{2}$

 $f_{u} = 450 \text{ N/mm}^{2}$ Connectors : Number = 136Diameter = 19 mm

 $h_1 = 62 \text{ mm}$ $h_2 = 58 \text{ mm}$ $\ell_1 = 101 \text{ mm}$ $\ell_2 = 62 \text{ mm}$ $\ell_3 = 106 \text{ mm}$

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

Geometrical characteristics and material properties

Fire protection (use of sprayed protection)

Fire protection material characteristics :

Thickness : d_p = 15 mm Thermal conductivity : λ_p = 0,12 W/(m·K) Specific heat : c_p =1100 J/(kg·K) Density: ρ_p = 550 kg/m³ 33

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

Loads

Permanents loads:

Steel decking :	$g_{t,k} = 0,085 \text{ kN/m}^2$
Concrete :	$g_{b,k} = 2,03 \text{ kN/m}^2$
Permanent load :	g _{c,k} = 1,5 kN/m²
Self weight of the profile :	G _{a,k} = 0,776 kN/ml

Variable load:

Variable load :

 $q_k = 4,0 \text{ kN/m}^2$

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

Determination of the load level in fire situation

$$\eta_{\text{fi},t} = \frac{\mathsf{E}_{\text{fi},\text{d},t}}{\mathsf{R}_{\text{d}}} = \frac{\mathsf{M}_{\text{fi},\text{Ed}}}{\mathsf{M}_{\text{Rd}}}$$

Combination of the mechanical actions:

System considered:

Central support : reaction = 1,25 P. ℓ

$$,25 P. \ell$$

 $f = 3m$
 $f = 3m$
 $f = 3m$
 $f = 14m$ (IPE450) S355

 $E_{d} = E\left\{\sum_{i>1} G_{k,j} + P + A_{d} + (\psi_{1,1} \text{ ou } \psi_{2,1})Q_{k,1} + \sum_{i>1} \psi_{2,i}Q_{k,i}\right\}$

$$F_{fi,d} = 1,25 \cdot \left[(g_{k,1} + \psi_{2,1} \cdot q_{k,1}) \cdot \ell \right] + G_{a,k} = 1,25 \cdot \left[(3,62 + 0,6 \cdot 4) \cdot 3 \right] + 0,776 = 23,332 \, kN/m$$

Calculated moment:

35

36

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

Critical temperature method

$\Rightarrow \quad \frac{f_{ay,\theta cr}}{f_{ay}} = 0,537$

Resistance

% of the nominal value

Table 3.2: Reduction factors k_{θ} for stress-strain relationships of structural steel at elevated temperatures.

Steel Temperature θ _a [°C]	$\mathbf{k}_{E, \theta}$	κ _{p,θ}	κ _{y,θ}	k _{u,θ}
20	1,00	1,00	1,00	1,25
100	1,00	1,00	1,00	1,25
200	0,90	0,807	1,00	1,25
300	0,80	0,613	1,00	1,25
400	0,70	0,420	1,00	
500	0,60	0,360	0,78	
600	0,31	0,180	0,47	
700	0,13	0,075	0,23	
800	0,09	0,050	0,11	
900	0,0675	0,0375	0,06	
1000	0,0450	0,0250	0,04	
1100	0,0225	0,0125	0,02	
1200	0	0	()

European Commission

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

Temperature calculation in the protected steel cross section

The increase of temperature of the various parts of the protected steel beam during the time interval may be determined by the following equation :

$$\Delta \theta_{a,t} = \left[\left(\frac{\lambda_{p}/d_{p}}{c_{a}\rho_{a}} \right) \left(\frac{A_{p,i}}{V_{i}} \right) \left(\frac{1}{1 + w/3} \right) \left(\theta_{t} - \theta_{a,t} \right) \Delta t \right] - \left[\left(e^{w/10} - 1 \right) \Delta \theta_{t} \right]$$

with :

 C_a specific heat of the steel ; varying according to the steel temperature [J/(kg.K)] (§3.3.1(4))

$$\rho_a$$
 density of the steel [kg/m³] (§ 3.4(1))

 λ_{p} thermal conductivity of the fire protection material [W/m°K]

 $A_{p,i}$ is the area of the inner surface of the fire protection material per unit length of the part i of the steel member [m²/m]

- V_i volume of the part i of the steel cross section per unit length [m³/m]
- $A_{p,i}/V_i$ section factor of the part i of the insulated steel cross-section [m⁻¹]
- Δt time interval (less than 5sec) [s]

$$w = \left(\frac{c_{p}\rho_{p}}{c_{a}\rho_{a}}\right) d_{p} \left(\frac{A_{p,i}}{V_{i}}\right) \quad \text{where} \quad c_{p} \\ \rho_{p}$$

specific heat of the fire protection material [J/kg°K] density of the fire protection material [kg/m³]

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

Temperature calculation in the protected steel cross section

 T° lower flange $\cong T^\circ$ upper flange

	A _m /V [m ⁻¹]	Steel temperature after 60' [°C]
Upper flange	147,5	480
Web	212,8	588
Lower flange	147,5	480

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

Determination of the failure time

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

Verification of the resistance by the moment resistance method

	θ _{a,max,30} [°C]	k _{y,θ} [-]	f _{ay,θ} [N/mm²]
Upper flange	480	0,824	292,5
Web	588	0,507	179,9
Lower flange	480	0,824	292,5

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

Determination of the tensile force in the profile

The steel profile is subjected to a tensile force T which could be calculated by the following way

$$T = \frac{f_{ay,\theta1} \cdot b \cdot e_f + f_{ay,\thetaw} \cdot h_w \cdot e_w + f_{ay,\theta2} \cdot b \cdot e_f}{\gamma_{M,fi,a}} = 2334,096 \, kN$$

The location of the tensile force (with regard to the bottom flange) is given by the following equation :

$$y_{T} = \frac{f_{ay,\theta1} \cdot \left(\frac{b \cdot e_{f}^{2}}{2}\right) + f_{ay,\thetaw} \left(h_{w} \cdot e_{w} \right) \left(e_{f} + \frac{h_{w}}{2}\right) + f_{ay,\theta2} \left(b \cdot e_{f} \right) \left(h - \frac{e_{f}}{2}\right)}{T \cdot \gamma_{M,fi,a}} = 222,6 \text{ mm}$$

42

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

Limitation of the tensile force

 $T \leq N \cdot P_{fiRd}$

with N is the number of connectors in the critical length of the beam P_{fi,Rd} is the design shear resistance of one connector in fire situation

$$P_{fi,Rd} = min \begin{cases} P_{fi,Rd,1} = 0,8 \cdot k_{u,\theta} \cdot P_{Rd,1}^{'} \\ P_{fi,Rd,2} = k_{c,\theta} \cdot P_{Rd,2}^{'} \end{cases}$$

where
$$P_{Rd,1}^{'} = 0.8 \cdot \frac{f_{u}}{\gamma_{M,fi,v}} \cdot \frac{\pi.d^{2}}{4} = 0.8 \cdot \frac{450}{1.0} \cdot \frac{\pi.19^{2}}{4} = 102 \text{ kN}$$

and $P_{Rd,2}^{'} = 0.29 \cdot \alpha \cdot d^{2} \cdot \frac{\sqrt{f_{c} \cdot E_{cm}}}{\gamma_{M,fi,v}} = 0.29 \cdot 1.0 \cdot 19^{2} \cdot \frac{\sqrt{25 \cdot 30500}}{1.0} = 91 \text{ kN}$

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

Determination of the reduction factors

$$\theta_v$$
 (connectors) = 80% $\theta_{semelle}$ = 0,8 x 480 = 384°C \Rightarrow k_{u, θ} = 1,04

$$\theta_{c}$$
 (concrete) = 40% $\theta_{semelle}$ = 0,4 x 480 = 192°C \Rightarrow k_{c, θ} = 0,954

Limit of the tensile force is fulfilled :

 $T \leq N \cdot P_{fi,Rd}$

 \implies 2334,096 kN < 68 · 84,9 = 5774 kN \implies **OK**

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

Determination of the compressive zone of the slab

Determination of the effective thickness of the slab

Determination of the critical height

 $h_{cr}^{60'} = 50mm$

Determination of the thickness of the compressive zone of the concrete :

$$h_{u} = \frac{T}{b_{eff} \cdot f_{c} / \gamma_{M, fi, c}} = \frac{2334,096}{3000 \cdot 25 / 1,0} = 31,12 \, \text{mm}$$

 $h_{eff} = 84,8 \, cm$

h _{cr}	Temperature [°C]			
fund	30'	60'		
5	535	705		
10	470	642		
15	415	581		
20	350	525		
25	300	469		
30	250	421		
35	210	374		
40	180	327		
45	160	289		
50	140	250		

45

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

Determination of the moment resistance

The stability of the beam in fire situation is fulfilled for R60

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

Verification of the shear resistance

$$V_{\text{pl,fi,Rd}} = A_v \cdot \frac{f_{\text{ay},\theta}}{\sqrt{3} \cdot \gamma_{\text{M,fi,a}}}$$

$$V_{\text{pl,fi,Rd}} = 5090 \cdot \frac{292,5}{\sqrt{3} \cdot 1,0} = 859,5 \text{ kN} > V_{\text{fi,Ed}} = \frac{p \cdot \ell}{2} = 163,33 \text{ kN} \implies \text{OK}$$

47

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

Alternative with reactive coating painted beam

European Commission

48

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

ABC calculation (Alternative AF solution without fire protection)

Structure grid of the composite building

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

Summary of data

- ➡ Partially encased composite column
- ➡ Height = 3,40 m

Geometrical characteristics and material properties

Profile :	HEA 260
	h = 250 mm
	b = 260 mm
	e _w = 7,5 mm
	e _f = 12,5 mm
	A _a = 8680 mm²
	f _y = 460 N/mm²
Concrete :	C30/37 ; f _c = 30 N/mm²
	A _c = 53860 mm²
Rebars :	4 ø 28 ; A _s = 2463 mm²
	u ₁ = 52mm ; u ₂ = 60mm
	f _s = 500 N/mm²

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

q₂ = 0,750 [(3,62+0,6*4,0)*3]+0,776 = 14,321 kN/m

 $\mathbf{P}_{tot} = (23,351*14/2) + (14,321*14/2) + 2*6+0,776*6+2,14*3,4 = 287,636 \text{ kN}$

P_{TOTAL} = 6 * 287,636 = 1726 kN

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

Inertia

Profile :
$$I_z = 3668 \text{ cm}^4$$

 $I_y = 10450 \text{ cm}^4$
Rebars : $I_{s,z} = 4 \cdot \left[\frac{\pi \cdot d^4}{64} + \frac{\pi \cdot d^2}{4} \left(\frac{b}{2} - u_2 \right)^2 \right] = 1324,6 \text{ cm}^4$
 $I_{s,y} = 4 \cdot \left[\frac{\pi \cdot d^4}{64} + \frac{\pi \cdot d^2}{4} \left(\frac{h}{2} - u_1 \right)^2 \right] = 1218,9 \text{ cm}^4$
Concrete : $I_{c,z} = \frac{h.b^3}{12} - I_z - I_{s,z} = 31730 \text{ cm}^4$

$$I_{c,y} = \frac{b.h^3}{12} - I_y - I_{s,y} = 22080 \text{ cm}^4$$

<u>Use of tabulated data</u> (0,28 < $\eta_{fi,t}$ < 0,47)

Allowed parameters R60	Existing parameters	Fulfilled conditions ?				
e _w / e _f > 0,5	7,5 / 12,5 = 0,6	YES				
h and b > 300 mm	h = 250 mm b = 260 mm	NO				
u_1 and u_2 > 50 mm	u ₁ = 52mm u ₂ = 60mm	YES				
$\frac{A_s}{A_c + A_s} > 4\%$	$\frac{2463}{538,6+2463}=4,4\%$	YES				
Mathed not applicable						

method not applicable

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

Simplified method : Application field

Allowed parameters R60	Existing parameters	Fulfilled conditions ?
$\ell_{_{ extsf{ heta}}} \! \leq \! 13,\!5b$ = 13,5 . 0,26 = 3,51m	$\ell_{_{ ext{ hetaz}}}$ = $\ell_{_{ ext{ hetay}}}$ = 0,7 . 3,4 = 2,38 m	YES
$230mm \le h \le 1100mm$	h = 250 mm	YES
$230mm \le b \le 500$	b = 260 mm	YES
$1\% \le A_{s}/(A_{c}+A_{s}) \le 6\%$	24,63/(538,6+24,63)=4,4%	YES
max R120	R60	YES
ℓ limited to 10b if 220 < b < 200	Weak axis : $\ell_{_{\Theta z}}$ = 2,38 < 10b = 2,6	YES
e_{θ} influed to TOD II 230 \leq b < 300	Strong axis : $\ell_{\theta y}$ = 2,38 < 10b = 2,6	YES

Method applicable

European Commission

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

Resistance to axial compression according to weak axis

Flanges of the profile

Mean temperature

Standard fire resistance	θ _{ο,t} [°C]	<i>k_t</i> [m°C]
R 30	550	9,65
R 60	680	9,55
R 90	805	6,15
R 120	900	4,65

Plastic resistance :

$$N_{\text{fi,pl,Rd,f}} \, = 2 \cdot (b \cdot e_{\text{f}} \, \cdot f_{\text{ay,f}} \, \cdot k_{\text{y,}\theta}) / \gamma_{\text{M,fi,a}}$$

$$N_{fi,pl,Rd,f} = 2 \cdot (260 \cdot 12, 5 \cdot 460 \cdot 0, 095) / 1,0 = 284,3 \, kN$$

Effective stiffness :

$$(EI)_{fi,f,z} = E_{a,f} \cdot k_{E,\theta} \cdot (e_f \cdot b^3)/6$$
$$(EI)_{fi,f,z} = 210000 \cdot 0,083 \cdot (12,5 \cdot 260^3)/6 = 640,4 \text{ kN.m}^2$$

$$\theta_{f,t} = \theta_{0,t} + k_t \cdot A_m / V$$

with $\frac{A_m}{V} = \frac{2(h+b)}{h.b} = 15,7m^{-1}$
 $\theta_{f,t} = 680 + 9,55 \cdot 15,7 = 830^{\circ}C \implies \begin{cases} k_{y,\theta} = 0,095 \\ k_{E,\theta} = 0,083 \end{cases}$

% of the nominal value

Web of the profile

Reduced height of web :

$$\begin{aligned} h_{w,fi} &= 0.5 \cdot \left(h - 2 \cdot e_{f}\right) \cdot \left(1 - \sqrt{1 - 0.16 \cdot (H_{t} / h)}\right) \\ h_{w,fi} &= 0.5 \cdot (250 - 2 \cdot 12.5) \left(1 - \sqrt{1 - 0.16(770/2 50)}\right) = 32.4 \, \text{mm} \end{aligned}$$

Standard fire resistance	<i>H_t</i> [mm]
R 30	350
R 60	770
R 90	1100
R 120	1250

Level of maximum stress :
$$f_{ay,w,t} = f_{ay,w} \sqrt{1 - (0,16H_t/h)}$$

 $f_{ay,w,t} = 460\sqrt{1 - (0,16 \cdot 770 / 250)} = 327,6MPa$
Plastic resistance : $N_{fi,pl,Rd,w} = \left[e_w \left(h - 2e_f - 2h_{w,fi}\right)f_{ay,w,t}\right]/\gamma_{M,fi,a}$
 $N_{fi,pl,Rd,w} = (7,5(250 - 2 \cdot 12,5 - 2 \cdot 32,4)327,6)/1,0 = 393,7kN$
Effective stiffness : $(EI)_{fi,w,z} = \left[E_{a,w} \left(h - 2e_f - 2h_{w,fi}\right)e_w^3\right]/12$
 $(EI)_{fi,w,z} = (210000(250 - 2 \cdot 12,5 - 2 \cdot 32,4)7,5^3)/12 = 1,18kN.m^2$

56

Standard fire
resistance $b_{c,fi}$ [mm]R304,0

15,0

 $0,5(A_m/V)+22,5$

					, (III / /			L
			R120		2,0(A	A _m /V)+24,()		D _{C,f}
R	30	0 R60		R90		R120		20	
A _m /V [m⁻¹]	ө [°), c,t C]	A _m /V [m⁻¹]	θ _{c,t} [°C]	A _m /V [m⁻¹]	θ _{c,t} [°Ċ]	A _m /V [m⁻¹]		θ _{c,t} [°Ċ]
4	1	36	4	214	4	256	4		265
23	3	00	9	300	6	300	5		300
46	4	00	21	400	13	400	9		400
	-		50	600	33	600	23		600
	_				54	800	38		800

Verification of the composite column

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

Standard fire

R60

R90

<u>Concrete</u>

Reduced thickness of concrete : b_{c.fi}

900

1000

41

43

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

Plastic resistance :

$$\begin{split} N_{fi,pl,Rd,c} &= 0,86 \left\{ \! \left(\! h - 2e_f - 2b_{c,fi} \right) \! \left(\! b - e_w - 2b_{c,fi} \right) \! - A_s \right\} f_{c,\theta} / \gamma_{M,fi,c} \\ N_{fi,pl,Rd,c} &= 0,86 \cdot \left\{ \! \left(\! 250 - 2 \cdot 12,5 - 2 \cdot 15 \right) \! \left(\! 260 - 7,5 - 2 \cdot 15 \right) \! - 2463 \right\} \cdot 25 \cdot 0,79 / 1,\! 0 = 839 \text{ kN} \end{split}$$

Effective stiffness :

$$(\mathsf{EI})_{\mathrm{fi},\mathrm{c},\mathrm{z}} = \mathsf{E}_{\mathrm{c},\mathrm{sec},\theta} \Big[\Big\{ (h - 2e_{\mathrm{f}} - 2b_{\mathrm{c},\mathrm{fi}}) \Big((h - 2b_{\mathrm{c},\mathrm{fi}})^3 - e_{\mathrm{w}}^3 \Big) / 12 \Big\} - \mathsf{I}_{\mathrm{s},\mathrm{z}} \Big] \\ (\mathsf{EI})_{\mathrm{fi},\mathrm{c},\mathrm{z}} = 2746, 4 \Big[\Big\{ (250 - 2 \cdot 12, 5 - 2 \cdot 15) ((260 - 2 \cdot 15)^3 - 7, 5^3) / 12 \Big\} - 1324, 6 \cdot 10^4 \Big] = 509, 5 \mathrm{kN} \cdot \mathrm{m}^2$$

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

Reinforcing bars

Reduction factor for yield strength : k _{y,t}							
Standard fire	<i>u</i> [mm] 40 45 50 55 60						
resistance							
R30	1	1	1	1	1		
R60	0,789	0,883	0,9763	1	1		
R90	0,314	0,434	0,572	0,696	0,822		
R120	0,170	0,223	0,288	0,367	0,436		

Reduction factor for Young modulus : k _{E,t}							
Standard fire	<i>u</i> [mm] 40 45 50 55 60						
resistance							
R30	0,830	0,865	0,88	0,914	0,935		
R60	0,604	0,647	0,689	0,729	0,763		
R90	0,193	0,283	0,406	0,522	0,619		
R120	0,110	0,128	0,173	0,233	0,285		

 $Plastic \ resistance: \ \ N_{fi,pl,Rd,s} \!=\! A_s \!\cdot\! k_{y,t} \!\cdot\! f_{s,y} / \gamma_{M,fi,s}$

 $N_{fi,pl,Rd,s} = 2463 \cdot 1,0 \cdot 500 / 1,0 = 1231,5 \, kN$

Effective stiffness :

5:
$$(EI)_{fi,s,z} = k_{E,t} \cdot E_s \cdot I_{s,z}$$

 $(EI)_{fi,s,z} = 0,735 \cdot 210000 \cdot 1218,9 \cdot 10^4 = 1881,4 \text{ kN}.\text{m}^2$

$$u = \sqrt{u_1 \cdot u_2} = \sqrt{52 \cdot 60} = 55,86 \, \text{mm}$$

Plastic resistance of the composite section

 $\mathbf{N}_{\text{fi,pl,Rd}} = \mathbf{N}_{\text{fi,pl,Rd,f}} + \mathbf{N}_{\text{fi,pl,Rd,w}} + \mathbf{N}_{\text{fi,pl,Rd,c}} + \mathbf{N}_{\text{fi,pl,Rd,s}}$

 $N_{\text{fi.pl},\text{Rd}} = 284,3 + 393,7 + 839 + 1231,5 = 2748\,\text{kN}$

Effective stiffness of the composite section

$$(\mathsf{EI})_{\mathsf{fi},\mathsf{eff},\mathsf{z}} = \varphi_{\mathsf{f},\theta}(\mathsf{EI})_{\mathsf{fi},\mathsf{f},\mathsf{z}} + \varphi_{\mathsf{w},\theta}(\mathsf{EI})_{\mathsf{fi},\mathsf{w},\mathsf{z}} + \varphi_{\mathsf{c},\theta}(\mathsf{EI})_{\mathsf{fi},\mathsf{c},\mathsf{z}} + \varphi_{\mathsf{s},\theta}(\mathsf{EI})_{\mathsf{fi},\mathsf{s},\mathsf{z}}$$

Standard fire resistance	$arphi_{{\it f}, heta}$	$arphi_{w, heta}$	$arphi_{{\it c}, heta}$	$\varphi_{{m s}, heta}$
R30	1,0	1,0	0,8	1,0
R60	0,9	1,0	0,8	0,9
R90	0,8	1,0	0,8	0,8
R120	1,0	1,0	0,8	1,0

 $(EI)_{fi,eff,z} = 0.9 \cdot 640.4 + 1.0 \cdot 1.18 + 0.8 \cdot 509.5 + 0.9 \cdot 1881.4 = 2678.4 \text{ kN}.\text{m}^2$

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

Determination of the axial buckling load at elevated temperatures

Euler buckling load :

 $N_{\text{fi,cr,z}} = \frac{\pi^2 \cdot (\text{EI})_{\text{fi,eff,z}}}{\ell_{\theta z}^2} \quad \text{with } \ell_{\theta z} = 2,38 \,\text{m}$

$$N_{fi,cr,z} = \frac{\pi^2 \cdot 2678,4}{2,38^2} = 4667 \, kN$$

Slenderness ratio :

$$\overline{\lambda}_{\theta} = \sqrt{\frac{N_{\text{fi,pl,R}}}{N_{\text{fi,cr,z}}}} = \sqrt{\frac{2748}{4667}} = 0,767 \quad \text{c curve} \rightarrow \chi_z = 0,683$$

Axial buckling resistance :

 $N_{\text{fi,Rd,z}} = \! \chi_z \cdot N_{\text{fi,pl,Rd}}$

 $N_{\rm fi,Rd,z} = 0,683 \cdot 2748 = 1876 \, kN > N_{\rm fi,Rd} = 1726 kN$

61

Resistance to axial compression according to strong axis

Same method as for weak axis, excepted of the inertia !

Plastic resistance of the composite section

 $N_{\rm fi,pl,Rd} = N_{\rm fi,pl,Rd,f} + N_{\rm fi,pl,Rd,w} + N_{\rm fi,pl,Rd,c} + N_{\rm fi,pl,Rd,s} = 2748 \, kN$

Effective stiffness of the composite section

 $(\mathsf{EI})_{\mathsf{fi},\mathsf{eff},\mathsf{y}} = \phi_{\mathsf{f},\theta}(\mathsf{EI})_{\mathsf{fi},\mathsf{f},\mathsf{y}} + \phi_{\mathsf{w},\theta}(\mathsf{EI})_{\mathsf{fi},\mathsf{w},\mathsf{y}} + \phi_{\mathsf{c},\theta}(\mathsf{EI})_{\mathsf{fi},\mathsf{c},\mathsf{y}} + \phi_{\mathsf{s},\theta}(\mathsf{EI})_{\mathsf{fi},\mathsf{s},\mathsf{y}} = 4097,1 \text{kN}.\text{m}^2$

Euler buckling load $N_{fi,cr,y} = \frac{\pi^2 \cdot (EI)_{fi,eff,y}}{\ell_{\theta y}^2} = 7138,8 \, kN$ Slenderness ratio $\overline{\lambda}_{\theta} = \sqrt{\frac{N_{fi,pl,R}}{N_{fi,cr,y}}} = 0,62$

Axial buckling resistance

$$N_{\text{fi,Rd},y} \,{=}\, \chi_y.N_{\text{fi,pl,Rd}} \,{=}\, 2124,\!8\,kN > N_{\text{fi,Rd}} \,{=}\, 1726kN$$

62

European Commission

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

A3C calculation (Alternative solution : Fully encased HEB160)

 Table 4.4:
 Minimum cross-sectional dimensions, minimum concrete cover of the steel section and minimum axis distance of the reinforcing bars, of composite columns made of totally encased steel sections.