

Fire resistance assessment of composite steel-concrete structures

Basic design methods Worked examples

CAJOT Louis-Guy

CEN/TC250 EG-EN1994-1-2 Convenor ArcelorMittal

email: lg.cajot@arcelormittal.com

Basic design methods of EN1994-1-2 Fire part of Eurocode 4

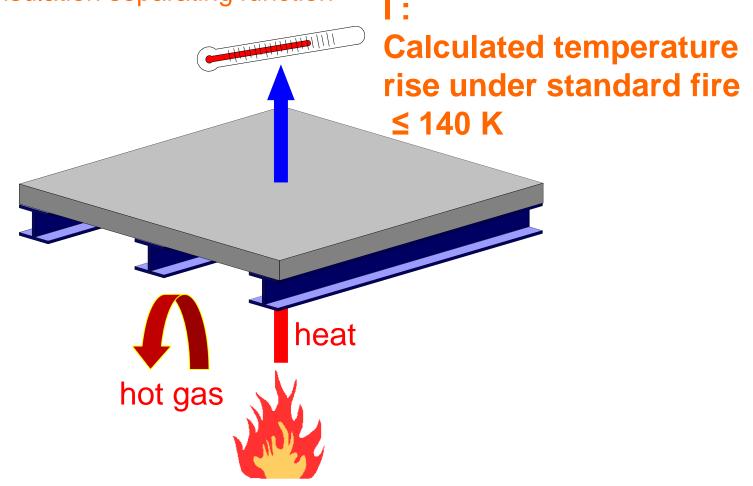
Following common layout to provide design rules for fire resistance of various types of structures:

™ General

- Scope, application field, definitions, symbols and units
- Basic principles
 - Performances requirements, design values of material properties and assessment approaches
- Material properties
 - Mechanical and thermal properties at elevated temperatures
- Assessment methods for fire resistance
- Constructional details
- Annexes
 - Additional information: common case more detailed design rules

Load bearing function R of composite structures is covered by the design rules of the fire part of Eurocode 4

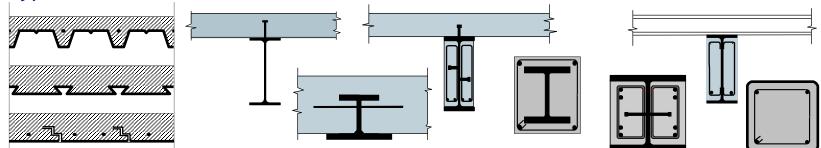
•Load bearing function of a structure is satisfied only if during the relevant of fire exposure **t**

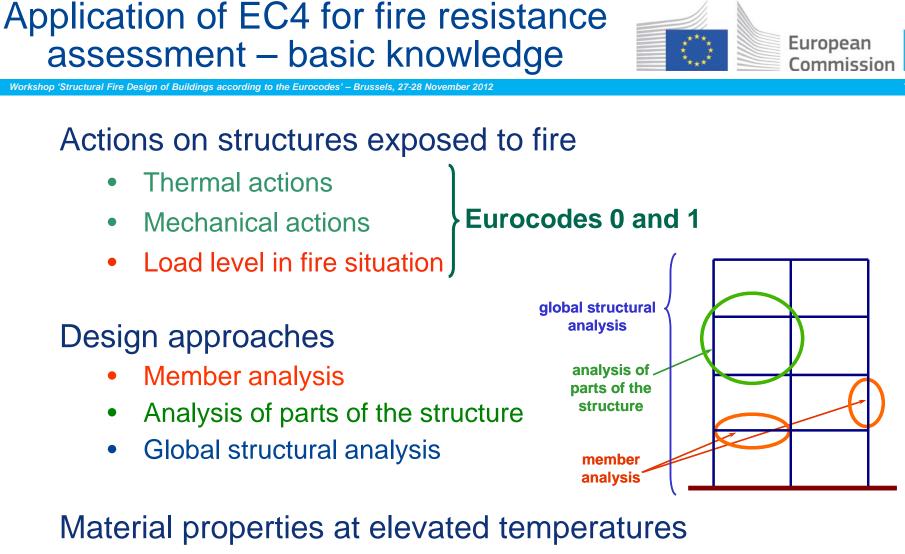

- $$\begin{split} & \textbf{E}_{fi,d,t} \leq \textbf{R}_{fi,d,t} \\ & \text{where} \\ & \textbf{E}_{fi,d,t}: & \text{design effect of actions (Eurocodes 0 and 1)} \\ & \textbf{R}_{fi,d,t}: & \text{corresponding design resistance of the structure at instant t} \end{split}$$
- In addition, for elements ensuring compartmentation, the separating function has to be maintained during the relevant fire exposure t
 - \rightarrow Integrity E
 - → Thermal insulation

Scope of fire part of Eurocode 4

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

- E Integrity separating function
- Thermal insulation separating function


E assumed to be satisfied for composite slabs

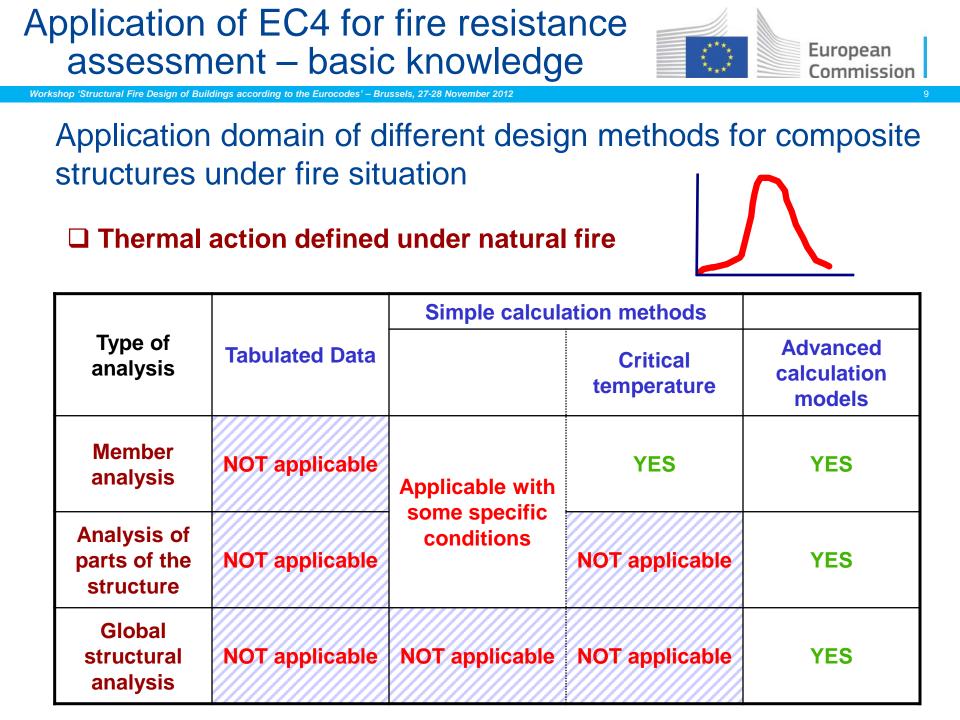

Covered field

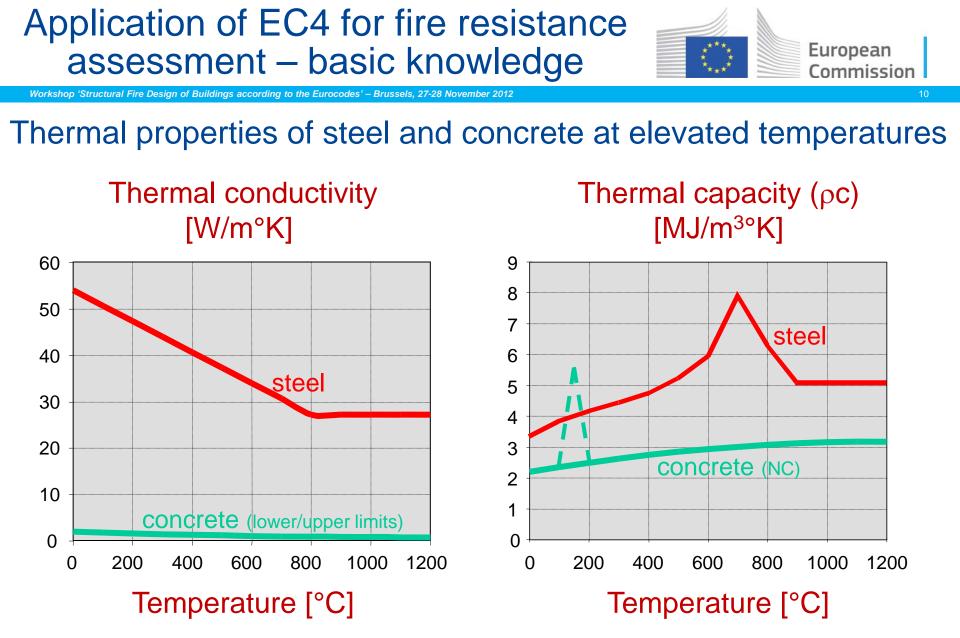
- Composite elements designed according to EN1994-1-1
- Longitudinal shear connection between steel and concrete in accordance with EN1994-1-1 or verified by tests
- Typical elements

- Steel grades S235, S275, S355, S420 & S460 of EN10025, EN10210-1 and EN10219-1
- Profiled steel sheeting following 3.5 of EN1994-1-1
- Rebars in accordance with EN10080
- Concrete in accordance with EN1994-1-1 except < C20/25 and LC20/22

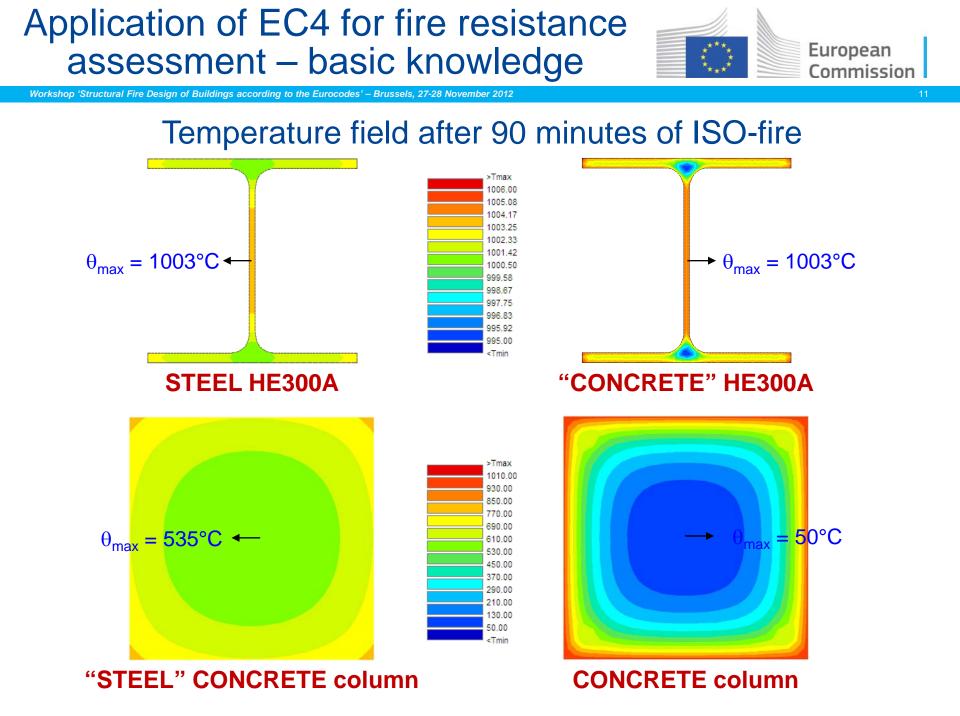
and > C50/60 and LC50/55

- Thermal properties of steel and concrete
- Mechanical properties of steel (sections, rebars) and concrete
- Partial factors for fire design of steel structures

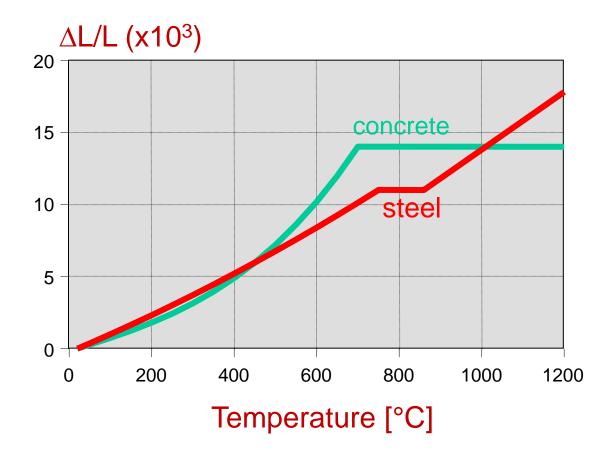


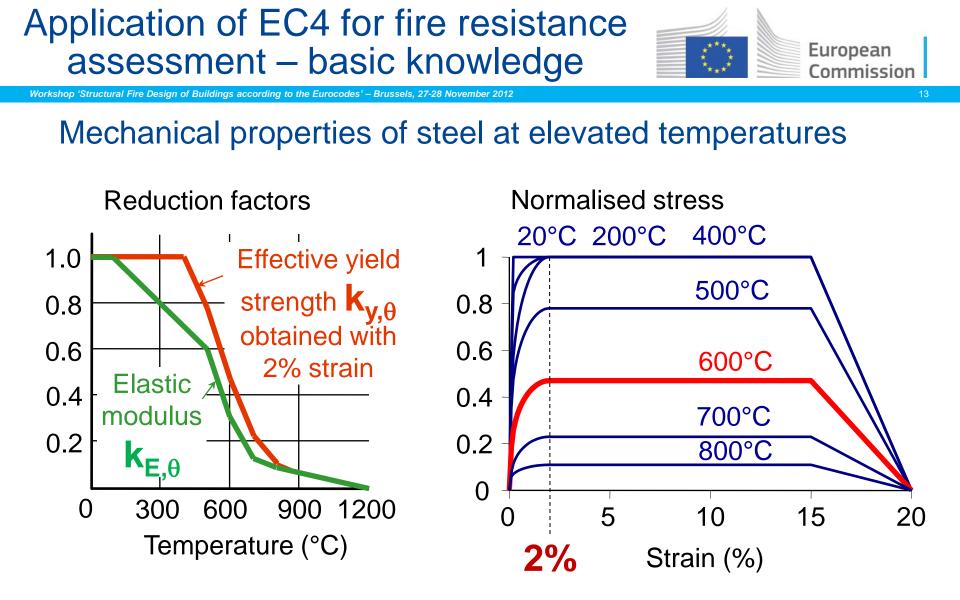

Application domain of different design methods for composite structures under fire situation

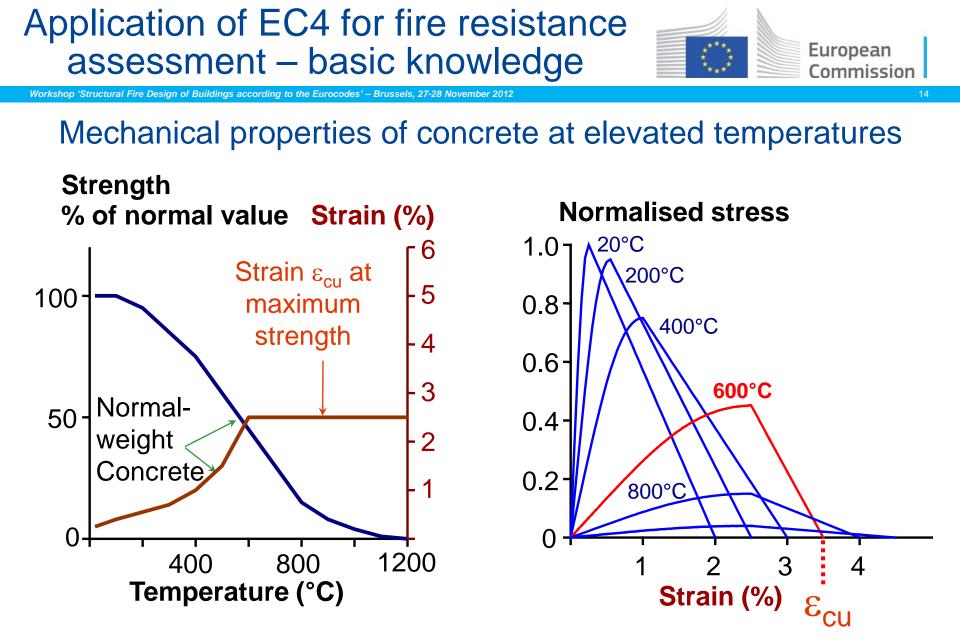
□ Thermal action defined under standard fire



		Simple calcula	ation methods		
Type of analysis	Tabulated Data	Simple calculation methods Critical temperature YES YES Applicable in		Advanced calculation models	
Member analysis	YES	YES	YES	YES	
Analysis of parts of the structure	NOT applicable	Applicable in some cases	NOT applicable	YES	
Global structural analysis	NOT applicable	NOT applicable	NOT applicable	YES	


Density of steel: 7850 kg/m³ ; Density of normal weight concrete: 2300 kg/m³ Thermal properties of concrete ONLY used in Advanced Calculation Models



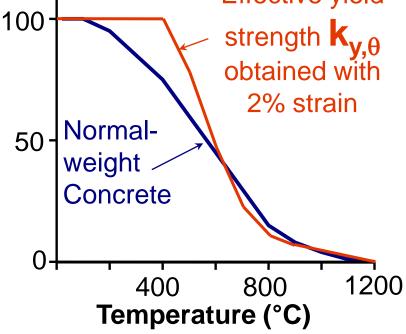

Thermal properties of steel and concrete at elevated temperatures

Thermal expansion of steel

 Elastic modulus at 600°C reduced by about 70% Yield strength at 600°C reduced by over 50%

Compressive strength at 600°C reduced by about 50%

Application of EC4 for fire resistance assessment – basic knowledge



temperatures

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 201

Mechanical properties of concrete and steel at elevated

Strength % of normal value Effective yield

Application of EC4 for fire resistance assessment – basic knowledge

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

Partial safety factors of steel/composite at elevated temperatures

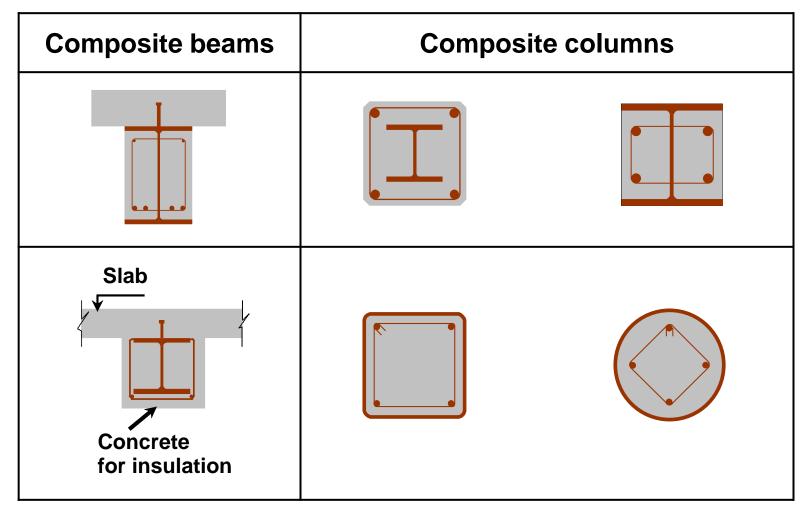
Material	Ambient temperature design	Fire design
Structural steel Resistance of cross section	γ _{M0} = 1.00	$\gamma_{M,fi,a} = 1.0$
Stability of members	$\gamma_{M1} = 1.00$	$\gamma_{M,fi,a} = 1.0$
Resistance of cross section In tension to fracture	γ _{M2} = 1.25	$\gamma_{M,fi,a} = 1.0$
Stud connectors	$\gamma_v = 1.25$	$\gamma_{M,fi,v} = 1.0$
Steel reinforcing bars	γ _s = 1.15	$\gamma_{M,fi,s} = 1.0$
Concrete	$\gamma_{\rm c} = 1.50$	$\gamma_{M,fi,c} = 1.0$

Application of EC4 for fire resistance assessment – Tabulated Data

European Commission

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' - Brussels, 27-28 November 2012

□ Thermal action defined under standard fire

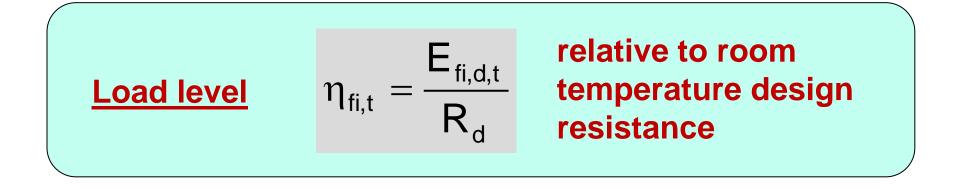

		Simple calcul	ation methods		
Type of analysis	Tabulated Data	Critical temperature		Advanced calculation models	
Member analysis	YES	YES	YES	YES	
Analysis of parts of the structure	NOT applicable	Applicable in some cases	NOT applicable	YES	
Global structural analysis	NOT applicable	NOT applicable	NOT applicable	YES	

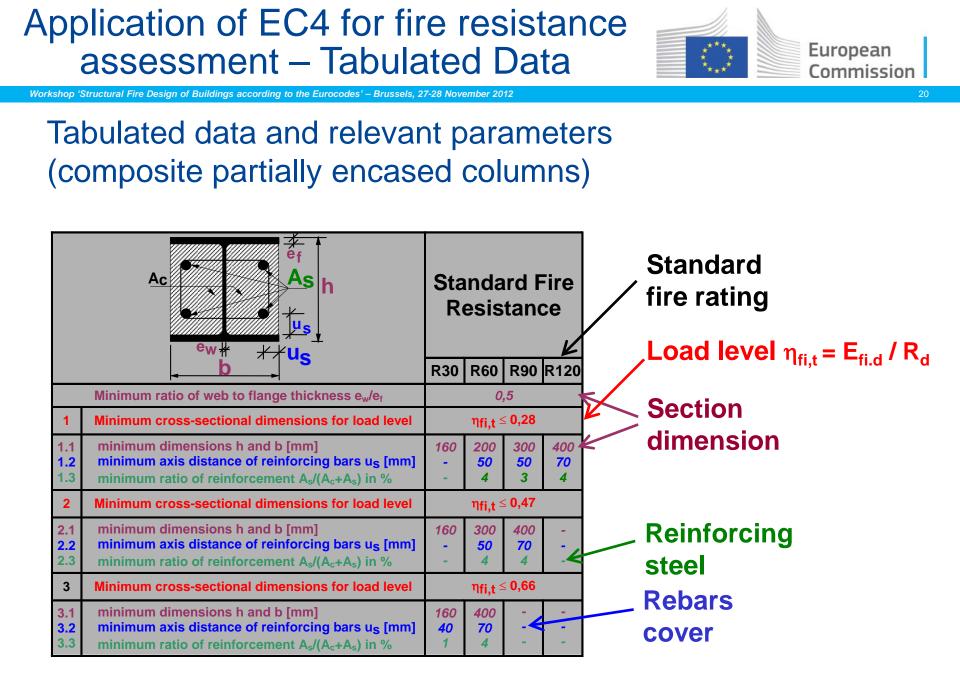
Application of EC4 for fire resistance assessment – Tabulated Data

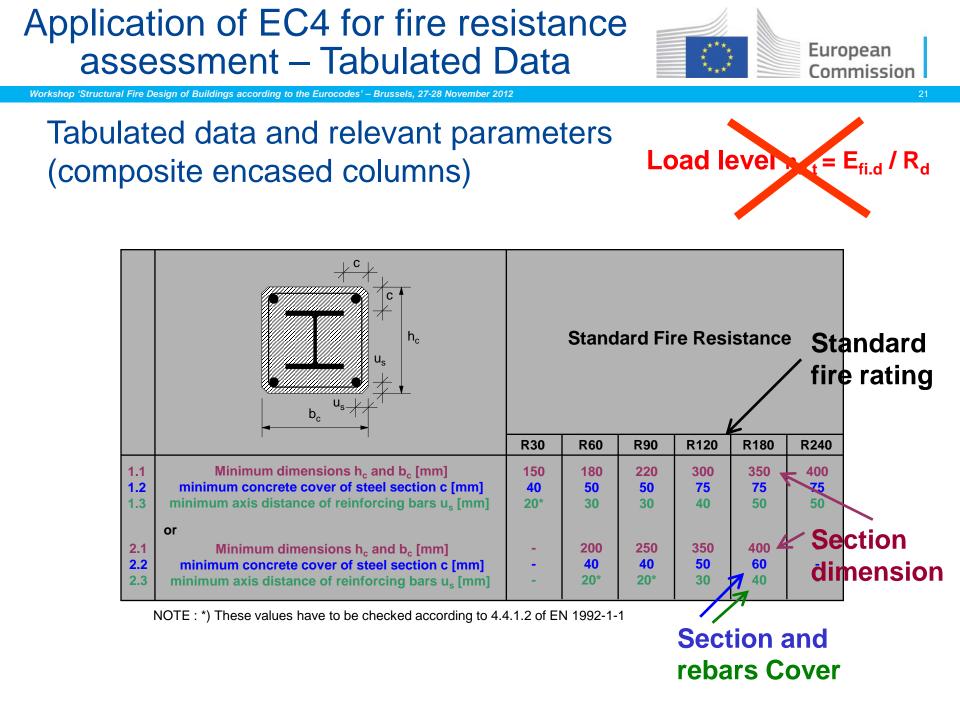
Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

Tabulated data (steel/concrete composite members)

Application of EC4 for fire resistance assessment – Tabulated Data


Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012


9

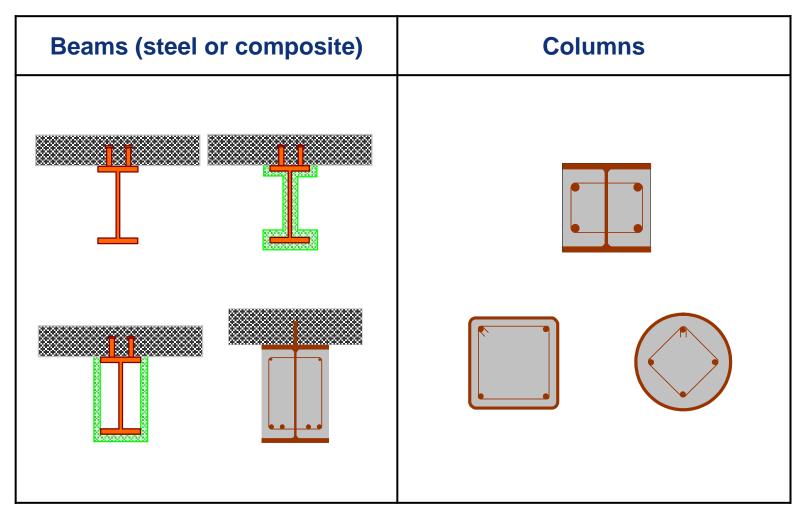

Design load in fire situation

$$\mathbf{E}_{fi,d,t} = \sum_{j \ge 1} \mathbf{G}_{k,j} + \Psi_{2,1} \mathbf{Q}_{k,1} + \sum_{i \ge 2} \Psi_{2,i} \mathbf{Q}_{k,i}$$

$$\xrightarrow{\mathbf{Recommended, for practical application refer to each National Annex}$$

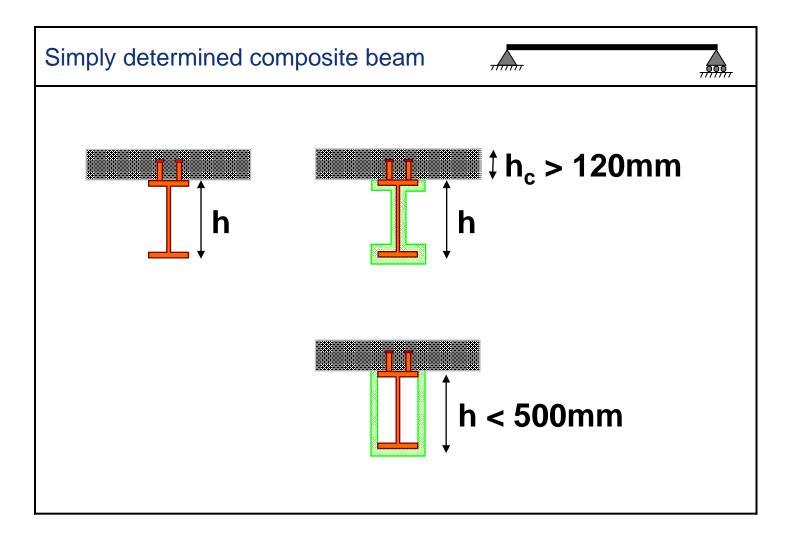
Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

□ Thermal action defined under standard fire

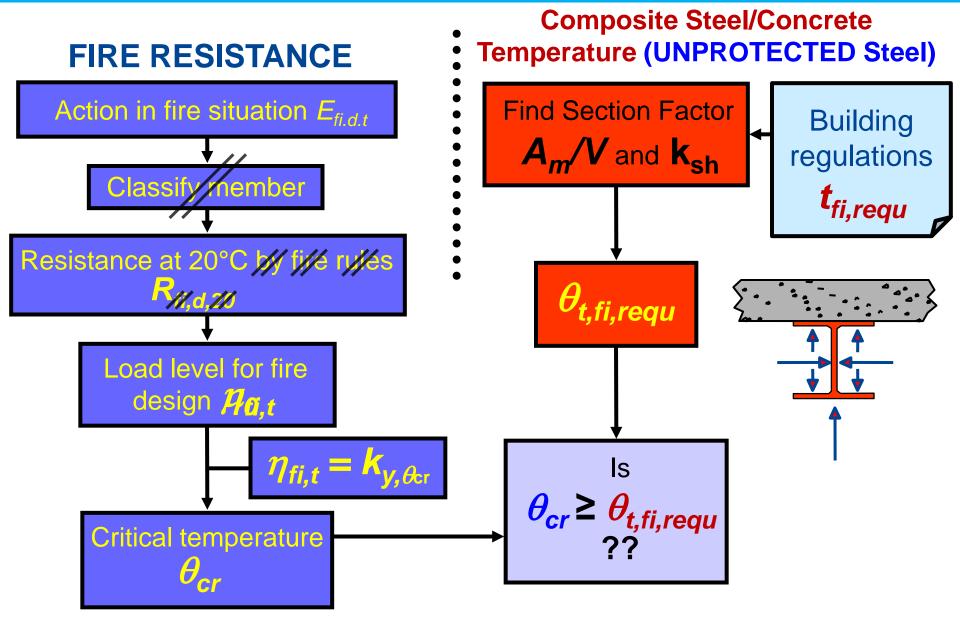

		Simple calcul		
Type of analysis	Tabulated Data		Critical temperature	Advanced calculation models
Member analysis	YES	YES	YES	YES
Analysis of parts of the structure	NOT applicable	Applicable in some cases	NOT applicable	YES
Global structural analysis	NOT applicable	NOT applicable	NOT applicable	YES

European

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

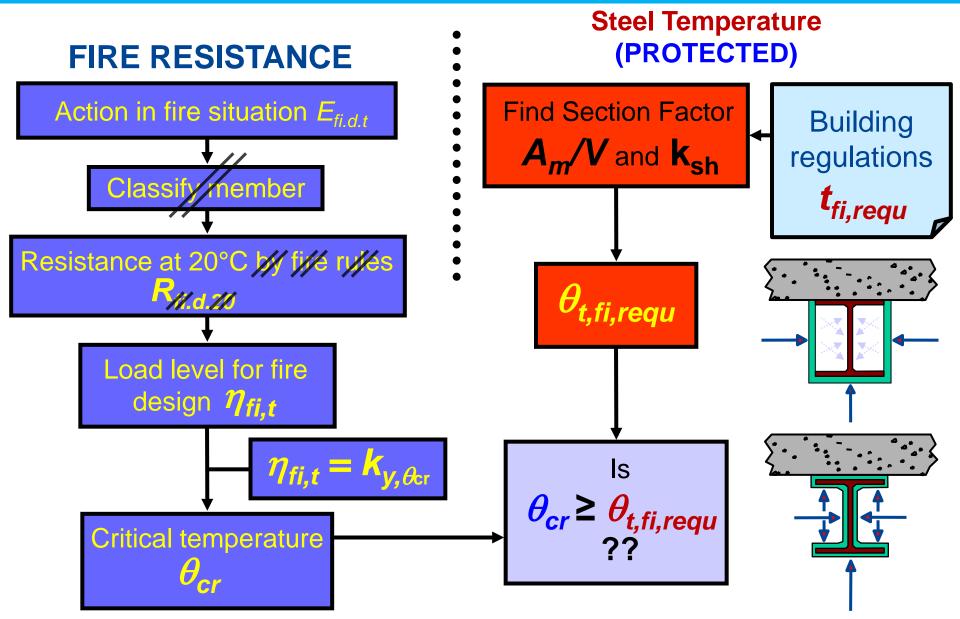

Simple calculation models and critical temperature for composite members

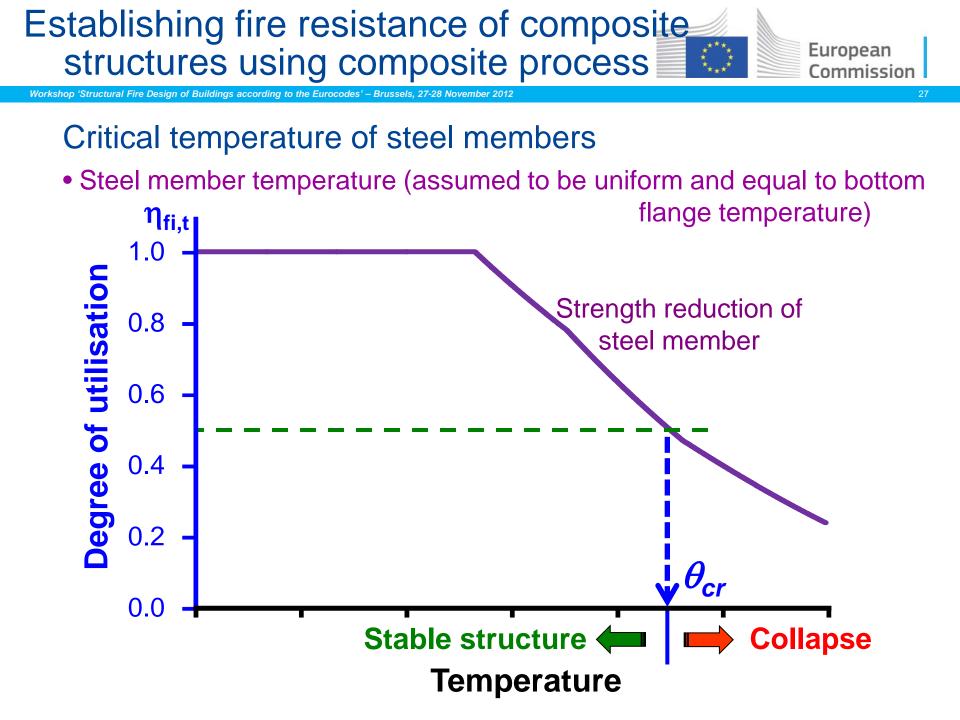
European


Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

Critical temperature method for composite beams

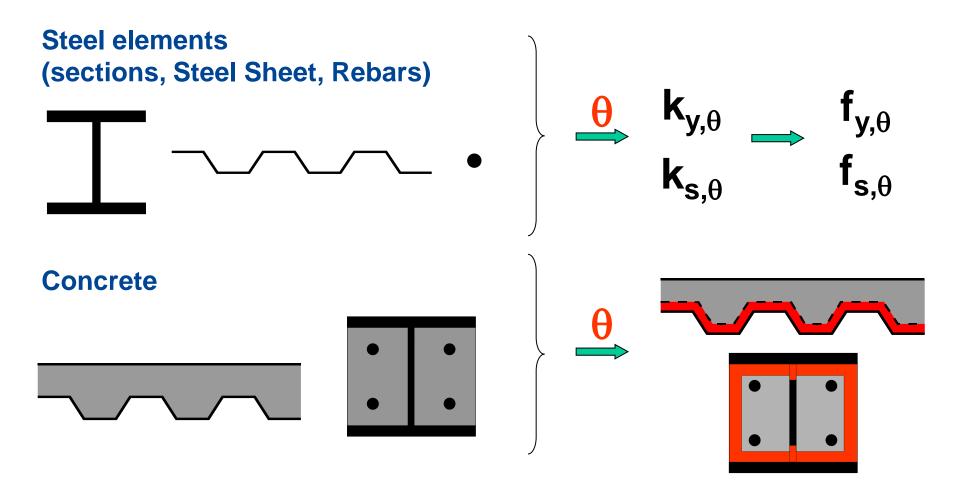
European

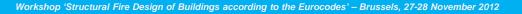

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

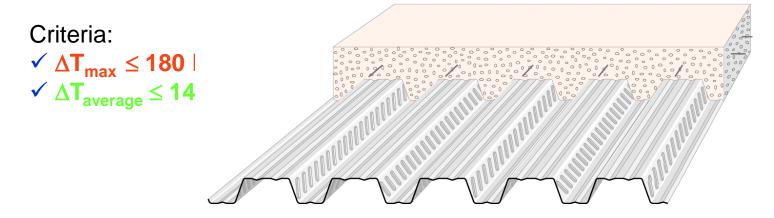


European

European Commission

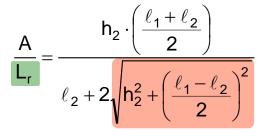

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

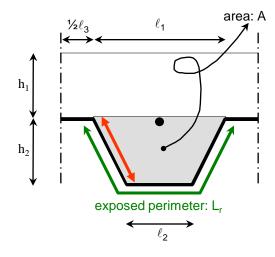



Simple Calculation Models

- ⇒ No tabulated data
- ⇒ Simplified calculation (§4.3)
 - Only for use with ISO fire
 - Integrity criteria E is assumed always satisfied
 - Thermal insulation I

European Commission


Simple Calculation Models


Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

The fire resistance t_i [min] corresponding to criteria I is given by

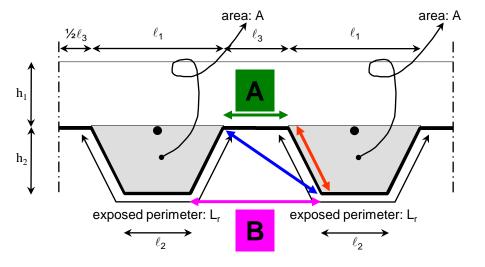
$$t_i = a_0 + a_1 \cdot h_1 + a_2 \cdot \Phi + a_3 \cdot \frac{A}{L_r} + a_4 \cdot \frac{1}{\ell_3} + a_5 \cdot \frac{A}{L_r} \cdot \frac{1}{\ell_3}$$

with

$$\Phi = \left(\sqrt{h_2^2 + \left(\ell_3 + \frac{\ell_1 - \ell_2}{2} \right)^2} - \sqrt{h_2^2 + \left(\frac{\ell_1 - \ell_2}{2} \right)^2} \right) / \ell_3$$

Table D.1: Coefficients for determination of the fire resistance with respect to thermal insulation

	a _o [min]	a ₁ [min/mm]	a ₂ [min]	a ₃ [min/mm]	a ₄ [mm min]	a ₅ [min]
Normal weight concrete	-28,8	1,55	-12,6	0,33	-735	48,0
Lightweight concrete	-79,2	2,18	-2,44	0,56	-542	52,3


30

Simple Calculation Models

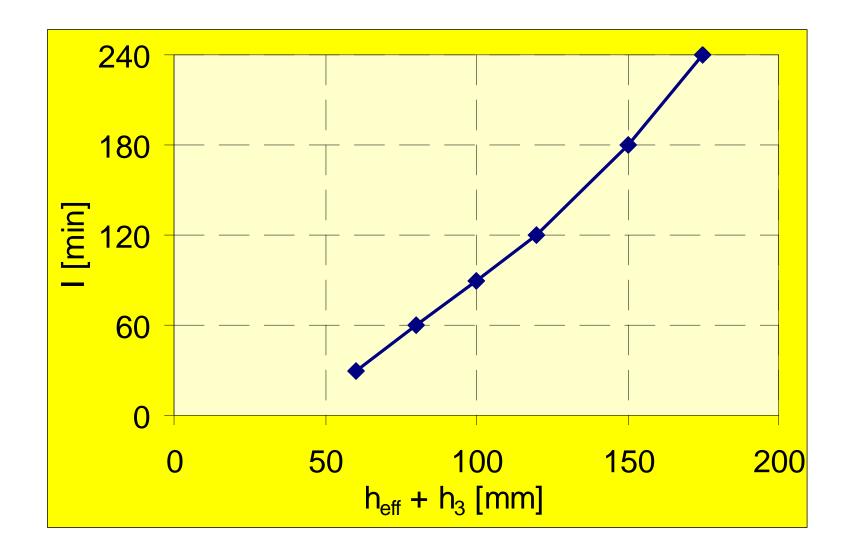
$$\Phi = \left(\sqrt{h_2^2 + \left(\ell_3 + \frac{\ell_1 - \ell_2}{2} \right)^2} - \sqrt{h_2^2 + \left(\frac{\ell_1 - \ell_2}{2} \right)^2} \right) / \ell_3$$

 Φ is the view factor $F_{A,B}$ calculated by the rule of Hottel

Alternative method : minimum effective thickness

(1) The effective h_{eff} is given by the formula :

$$h_{eff} = h_{1} + 0.5 \cdot h_{2} \left(\frac{\ell_{1} + \ell_{2}}{\ell_{1} + \ell_{3}} \right) \qquad \text{for } h_{2} / h_{1} \le 1.5 \text{ and } h_{1} > 40 \text{mm} \qquad h_{eff}$$
$$h_{eff} = h_{1} \left[1 + 0.75 \cdot \left(\frac{\ell_{1} + \ell_{2}}{\ell_{1} + \ell_{3}} \right) \right] \qquad \text{for } h_{2} / h_{1} > 1.5 \text{ and } h_{1} > 40 \text{mm} \qquad (h_{eff} - h_{1} - h_{2} - h_{1} - h_{2} - h$$


Table D	.6: Minimum effective thickness	as a function of the standard fire	e resistance.
	Standard Fire Resistance	Minimum effective thickness	
		$h_{e\!f\!f}$ [mm]	
	I 30	60 - <i>h</i> ₃	
	I 60	80 - <i>h</i> 3	
	I 90	100 - <i>h</i> ₃	
	I 120	120 - <i>h</i> ₃	
	I 180	150 - <i>h</i> ₃	
	I 240	175 - <i>h</i> ₃	

Simple Calculation Models

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

- ⇒ No tabulated data
- ⇒ Simplified calculation (§4.3)
 - Only for use with ISO fire
 - Integrity criteria E is assumed always satisfied
 - Thermal insulation I
 - Load bearing capacity R
 - If the design conforms to EN 1994-1-1, $R \ge 30$ minutes.
 - For composite slabs, the bending capacity has to be determined by a plastic design.

Temperature field

The temperature θ_a of the lower flange, web and upper flange of the steel decking may be given by:

$$\theta_{a} = b_{0} + b_{1} \cdot \frac{1}{\ell_{3}} + b_{2} \cdot \frac{A}{L_{r}} + b_{3} \cdot \Phi + a_{4} \cdot \Phi^{2}$$
(D.2.1)

Concrete	Fire resistance [min]	Part of the steel sheet	<i>b</i> ₀ [°С]	b₁ [ºC]. mm	b ₂ [ºC]. mm	<i>b</i> ₃ [°С]	<i>b₄</i> [°C]
Normal weight concrete	60	Lower flange Web Upper flange	951 661 340	-1197 -833 -3269	-2,32 -2,96 -2,62	86,4 537,7 1148,4	-150,7 -351,9 -679,8
	90	Lower flange Web Upper flange	1018 816 618	-839 -959 -2786	-1,55 -2,21 -1,79	65,1 464,9 767,9	-108,1 -340,2 -472,0
	120	Lower flange Web Upper flange	1063 925 770	-679 -949 -2460	-1,13 -1,82 -1,67	46,7 344,2 592,6	-82,8 -267,4 -379,0

European Commission

Temperature field

The temperature θ_s of the reinforcement bars in the rib, if any according to figure D.2.1, as follows:

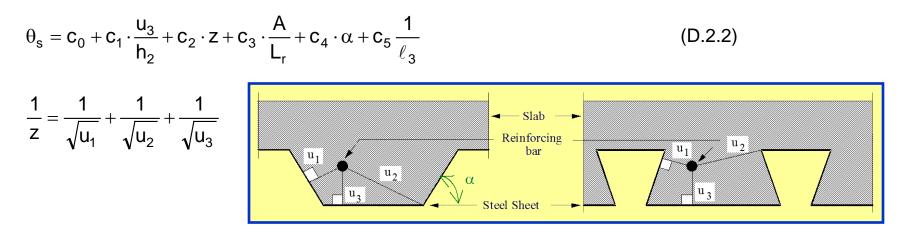
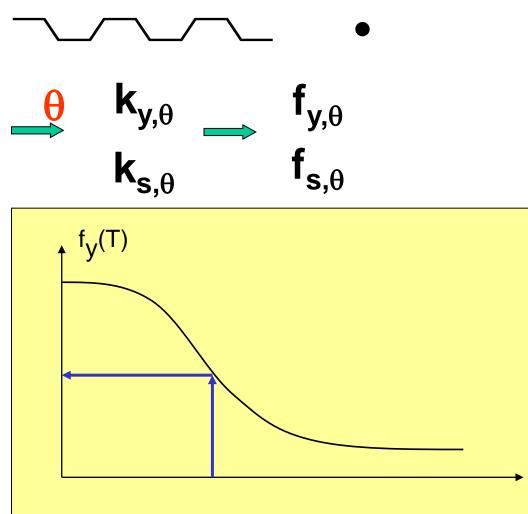


Table D.2.2 : Coefficients for the determination of the temperatures of the reinforcement bars in the rib.

Concrete	Fire resistance [min]	с _о [°С]	с ₁ [°С]	c₂ [ºC]. mm ^{0.5}	c₃ [ºC].mm	с ₄ [°С/°]	<i>с₅</i> [°С].mm
Normal	60	1191	-250	-240	-5,01	1,04	-925
weight concrete	90	1342	-256	-235	-5,30	1,39	-1267
	120	1387	-238	-227	-4,79	1,68	-1326


European Commission

Simple Calculation Models

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

Composite slab fire design

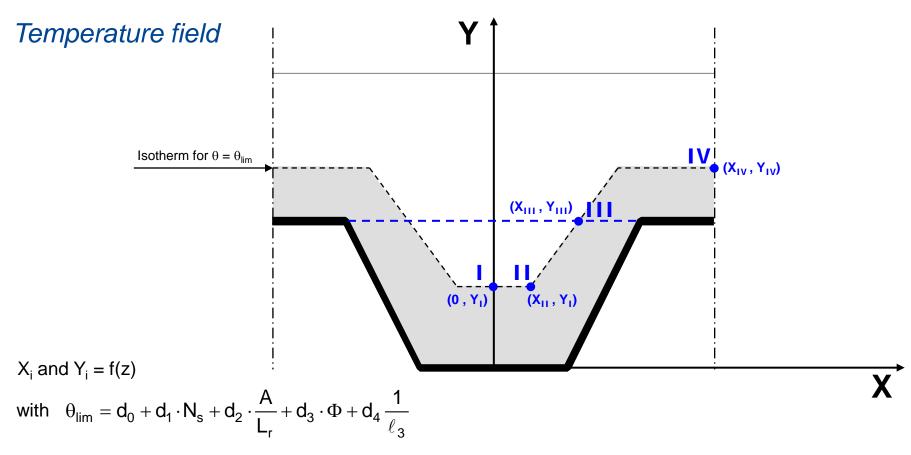
	Steel	Reinforcing steel	Concrete
Temperature [°C]	f _y (T)/f _y	f _{sy} (T)/f _{sy}	f _c (T)/f _c
20	1.00	1.00	1.00
100	1.00	1.00	1.00
200	1.00	1.00	0.95
300	1.00	1.00	0.85
400	1.00	0.94	0.75
500	0.78	0.67	0.60
600	0.47	0.40	0.45
700	0.23	0.12	0.30
800	0.11	0.11	0.15
900	0.06	0.08	0.08
1000	0.04	0.05	0.04
1100	0.02	0.03	0.01
1200	0.00	0.00	0.00

Т

Bending capacity in sagging moment M⁺_{fi,Rd}

The plastic neutral axis of a composite slab or composite beam may be determined from :

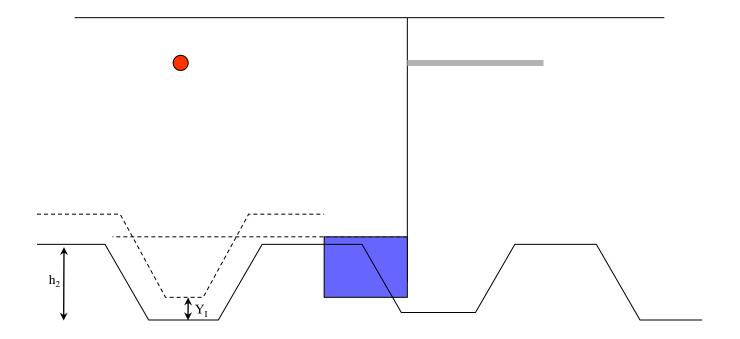
$$\sum_{i=1}^{n} A_{i} k_{y,\theta,i} \left(\frac{f_{y,i}}{\gamma_{M,fi,a}} \right) + \alpha_{slab} \sum_{j=1}^{m} A_{j} k_{c,\theta,j} \left(\frac{f_{c,j}}{\gamma_{M,fi,c}} \right) = 0 \qquad \alpha_{slab} = 0.85$$


Design moment resistance

The design moment resistance $M_{fi.t.Rd}$ may be determined from :

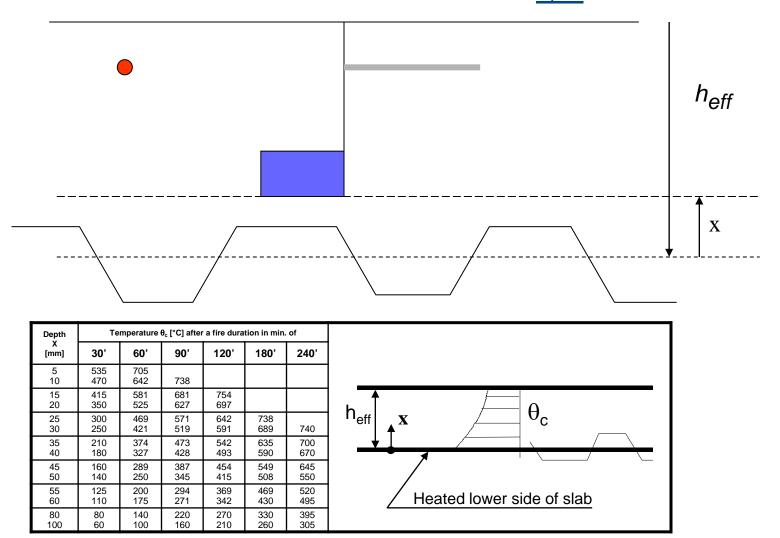
$$M_{\text{fi},\text{t},\text{Rd}} = \sum_{i=1}^{n} A_i z_i k_{y,\theta,i} \left(\frac{f_{y,i}}{\gamma_{\text{M,fi}}} \right) + \alpha_{\text{slab}} \sum_{j=1}^{m} A_j z_j k_{\text{c},\theta,j} \left(\frac{f_{\text{c},j}}{\gamma_{\text{M,fi,c}}} \right)$$

and z is obtained from the equation for the determination of θ_s , assuming that $u_3/h_2 = 0.75$ and $\theta_s = \theta_{lim}$

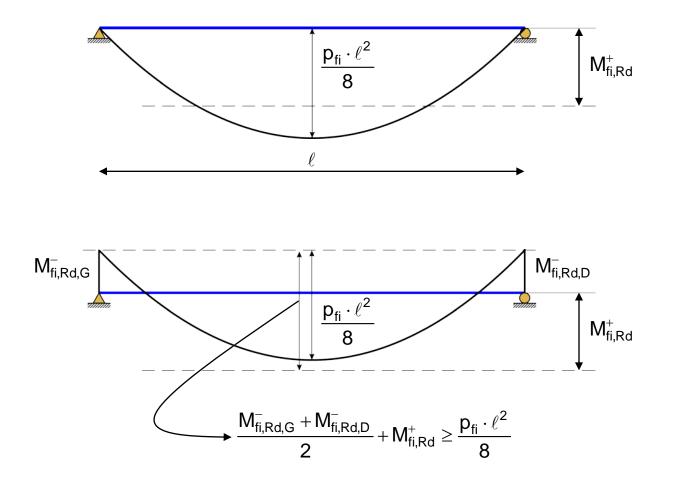

$$\theta_{s} = C_{0} + C_{1} \cdot \frac{U_{3}}{h_{2}} + C_{2} \cdot Z + C_{3} \cdot \frac{A}{L_{r}} + C_{4} \cdot \alpha + C_{5} \frac{1}{\ell_{3}}$$

40

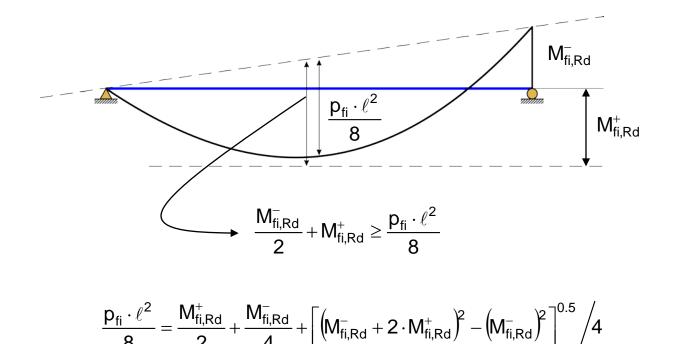
Bending capacity in hogging moment M_{fi,Rd}


If $Y_1 > h_2 \implies$ Alternative procedure based on the effective thickness

41


Bending capacity in hogging moment M_{fi,Rd}

Bending capacity of the composite slab


42

43

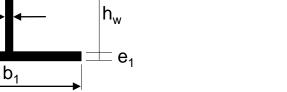
Bending capacity of the composite slab

Simple Calculation Models

Composite beam fire design

Temperature field

Web


<u>Upper flange</u> A_i / V_i or $A_{p,i} / V_i = (b_2 + 2e_2) / b_2 e_2$ $A_i / V_i \text{ or } A_{p,i} / V_i = 2(b_2 + e_2) / b_2 e_2$

> If the beam depth h does not exceed 500mm, the temperature of the web may be

taken as equal to that of the lower flange.

<u>Lower flange</u> A_i / V_i or $A_{p,i} / V_i = 2(b_1 + e_1) / b_1 e_1$

Depth	Те	mperature	θ _c [°C] afte	r a fire dura	tion in min	. of
X [mm]	30'	60'	90'	120'	180'	240'
5 10	535 470	705 642	738			
15 20	415 350	581 525	681 627	754 697		
25	300	469	571	642	738	740
30	250	421	519	591	689	
35	210	374	473	542	635	700
40	180	327	428	493	590	670
45	160	289	387	454	549	645
50	140	250	345	415	508	550
55	125	200	294	369	469	520
60	110	175	271	342	430	495
80	80	140	220	270	330	395
100	60	100	160	210	260	305

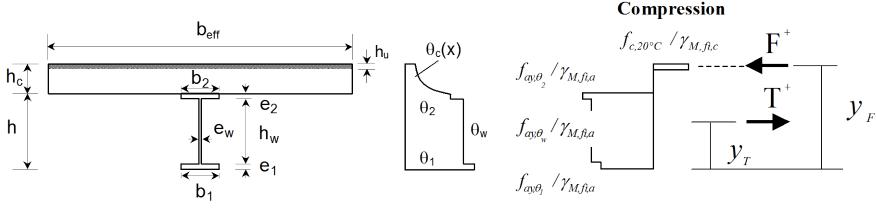
$$\Delta \theta_{a,t} = k_{shadow} \left(\frac{1}{c_a \rho_a}\right) \left(\frac{A_i}{V_i}\right)^{\bullet} h_{net} \cdot \Delta t$$

b_{eff}

b₂

 \mathbf{e}_{w}

h


Composite beam fire design

Structural behaviour - Bending moment resistance model M_{Rd}^+

Classical determination of the bending moment resistance, taking into account the variation of material properties with temperatures, see Annex E.

⇒No strength reduction in concrete if T < 250°C

 $\Rightarrow The value of the tensile force is limited by the resistance of the shear connectors : T^+ \le N \cdot P_{fiRd}$

Tension

Composite beam fire design

Structural behaviour - Bending moment resistance model M_{Rd}^+

Verification of the stud connectors

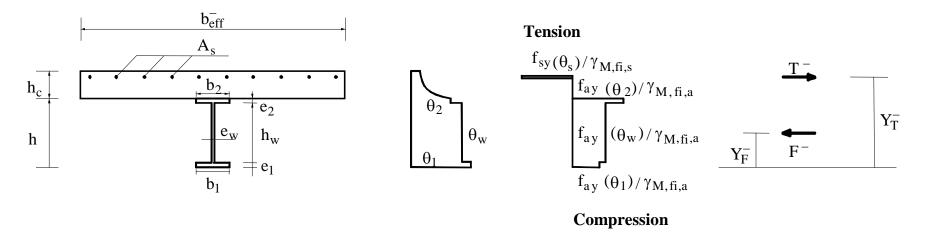
 $P_{fi,Rd}$ = minimum of the 2 following values:

 $\begin{cases} \mathsf{P}_{\mathsf{fi},\mathsf{Rd}} = \mathsf{0,8} \cdot \mathsf{k}_{\mathsf{u},\theta} \cdot \mathsf{P}_{\mathsf{Rd}} & \text{with } \mathsf{P}_{\mathsf{Rd}} \text{ obtained from equation 6.18 of EN1994-1-1} \\ \mathsf{P}_{\mathsf{fi,Rd}} = \mathsf{k}_{\mathsf{c},\theta} \cdot \mathsf{P}_{\mathsf{Rd}} & \text{with } \mathsf{P}_{\mathsf{Rd}} \text{ obtained from equation 6.19 of EN1994-1-1} \end{cases}$

with

 $\Rightarrow \gamma_{m,fi}$ used instead of γ_{v}

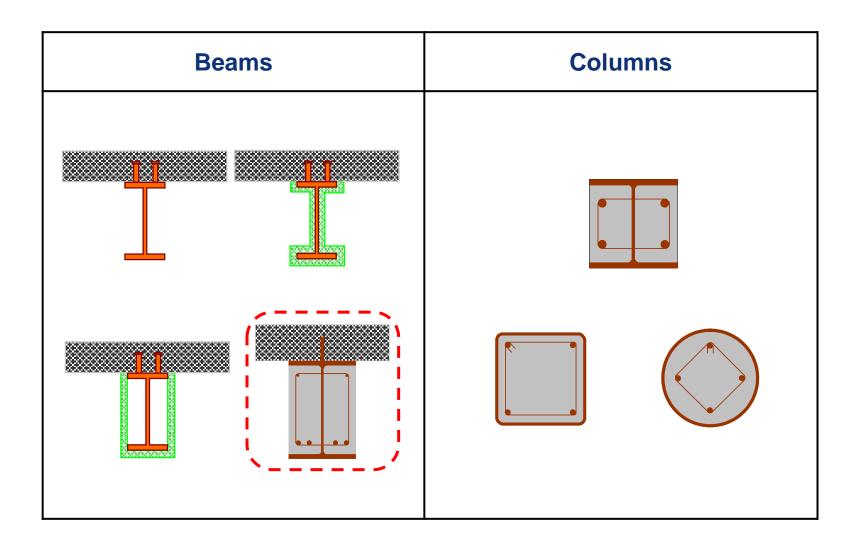
- $\Rightarrow k_{u,\theta}$ and $k_{c,\theta}$ defining the decrease of material strength
- $\Rightarrow \theta_u$ in the stud = 0.80 $\theta_{upper flange}$
- $\Rightarrow \theta_c$ of the concrete = 0.40 $\theta_{upper flange}$



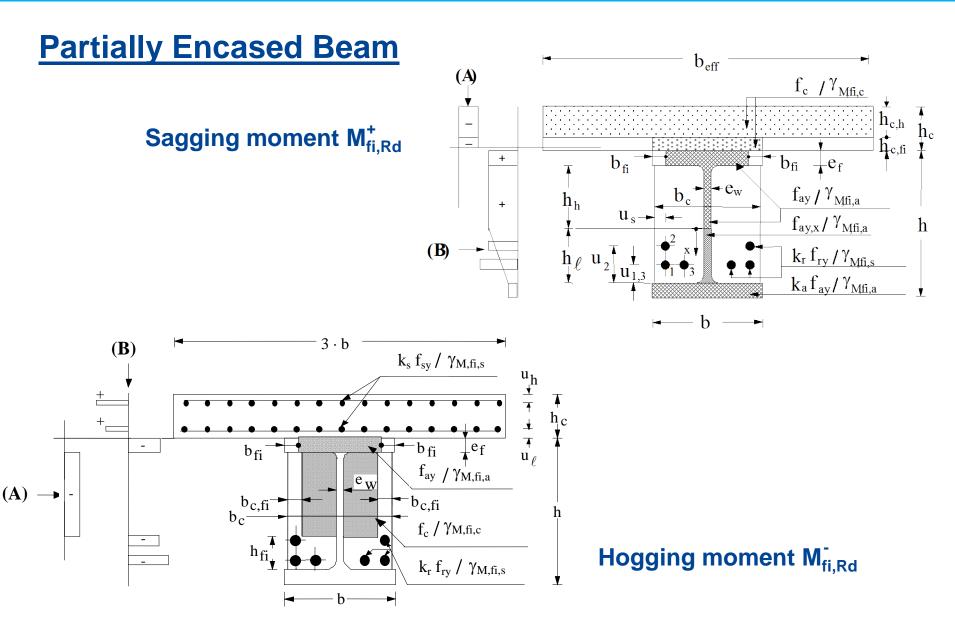
Composite beam fire design

Hogging moment resistance at an intermediate support

Choose the effective width of the slab to have the slab completely cracked, but $b_{eff}(T) \le b_{eff}(20^{\circ}C)$.



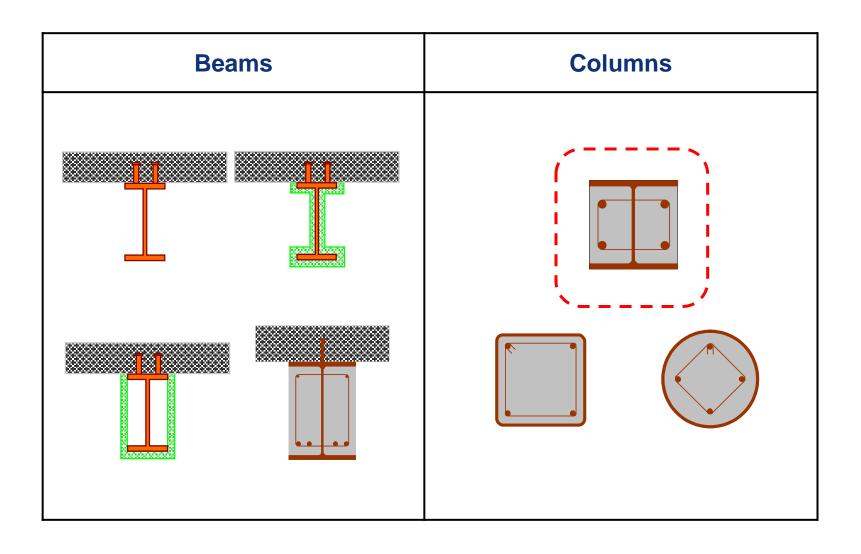
If web or lower flange are Class 3, reduce its width according to EN 1993-1-5. If web or lower flange are Class 4, its resistance may be neglected.


<u>Note</u>: classification according to EN1993-1-2 $\varepsilon = 0.85 \left[235 / f_y \right]^{0.5}$

European Commission

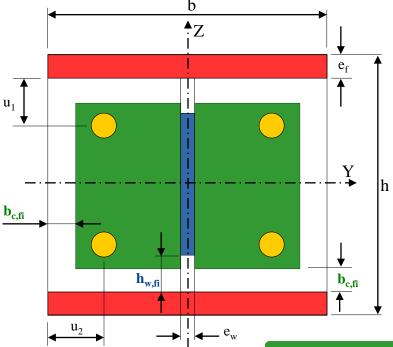
Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012


European

Commission

49


European Commission

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' - Brussels, 27-28 November 2012

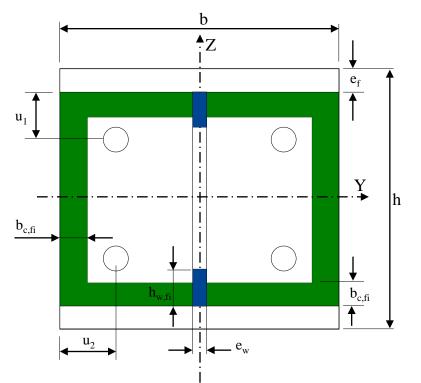
Partially Encased Column

 $f_{amax,w,t} = f_{ay,w,20^{\circ}C} \cdot \sqrt{1 - (0,16H_t/h)}$

Table G.5: Reduction factor k _{y,t} for the yield point f _{sy,20°C} of the reinforcing bars								
u[mm] Standard Fire Resistance	40	45	50	55	60			
R30	1	1	1	1	1			
R60	0,789	0,883	0,976	1	1			
R90	0,314	0,434	0,572	0,696	0,822			
R120	0,170	0,223	0,288	0,367	0,436			

Table G.6: Reduction factor k_{Ft} for the modulus of elasticity E_{s 20°C} of the reinforcing bars

u[mm] Standard Fire Resistance	40	45	50	55	60
R30	0,830	0,865	0,888	0,914	0,935
R60	0,604	0,647	0,689	0,729	0,763
R90	0,193	0,283	0,406	0,522	0,619
R120	0,110	0,128	0,173	0,233	0,285


R	30	R	R60 R90 R1		R90		20
A _m /V [m⁻¹]	θ _{c,t} [°C]	A _m /V [m ⁻¹]	θ _{c,t} [°C]	A _m /V [m ⁻¹]	θ _{c,t} [°C]	A _m /V [m⁻¹]	θ _{c,t} [°C]
4 23 46 - - -	136 300 400 - - -	4 9 21 50 - -	214 300 400 600 - - -	4 6 13 33 54 -	256 300 400 600 800 - -	4 5 9 23 38 41 43	265 300 400 600 800 900 1000

$\theta_{f,t} = \theta_{0,t} + k_t (A_m / V)$						
Standard Fire Resistance	θ _{0,t} [°C]	k _t [m°C]				
R30	550	9,65				
R60	680	9,55				
R90	805	6,15				
R120	900	4,65				

5

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

Partially Encased Column

Standard Fire Resistance	b _{c,fi} [mm]
R 30	4,0
R 60	15,0
R 90	$0,5 (A_m/V) + 22,5$
R 120	2,0 (A _m /V) + 24,0

$$h_{w,fi} = 0,5(h - 2e_f) \left(1 - \sqrt{1 - 0,16(H_t / h)} \right)$$

where H_t is given in table G.2

Standard Fire Resistance	H _t [mm]
R 30	350
R 60	770
R 90	1100
R 120	1250

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

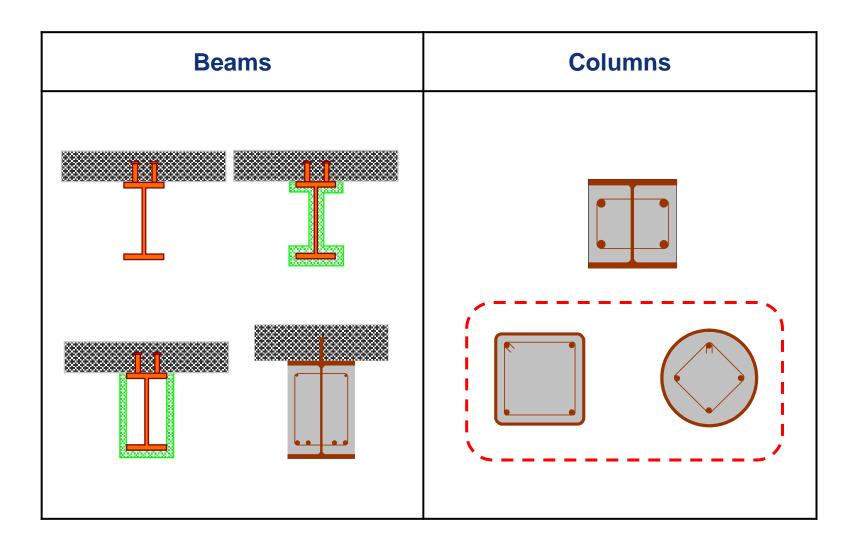
Partially Encased Column

 $N_{\text{fi,pl,Rd}} = N_{\text{fi,pl,Rd,f}} + N_{\text{fi,pl,Rd,w}} + N_{\text{fi,pl,Rd,c}} + N_{\text{fi,pl,Rd,s}}$

 $(\mathsf{EI})_{\mathsf{fi},\mathsf{eff},z} = \phi_{\mathsf{f},\theta}(\mathsf{EI})_{\mathsf{fi},\mathsf{f},z} + \phi_{\mathsf{w},\theta}(\mathsf{EI})_{\mathsf{fi},\mathsf{w},z} + \phi_{\mathsf{c},\theta}(\mathsf{EI})_{\mathsf{fi},\mathsf{c},z} + \phi_{\mathsf{s},\theta}(\mathsf{EI})_{\mathsf{fi},\mathsf{s},z}$

where $\phi_{i,\theta}$ is a reduction coefficient depending on the effect of thermal stress.

The values of $\varphi_{i,\theta}$ are given in Table G.7


Standard fire resistance	φ _{f,θ}	Φ _{w,θ}	φ _{c,θ}	φ _{s,θ}
R30	1,0	1,0	0,8	1,0
R60	0,9	1,0	0,8	0,9
R90	0,8	1,0	0,8	0,8
R120	1,0	1,0	0,8	1,0

Buckling curve "*c*" of EN 1993-1-1

European Commission

Workshop 'Structural Fire Design of Buildings according to the Eurocodes' – Brussels, 27-28 November 2012

