

Eurocodes Background and Applications

Design of **Steel Buildings**

with worked examples

16-17 October 2014 Brussels, Belgium

Organised and supported by

European Commission

DG Enterprise and Industry Joint Research Centre

European Convention for Constructional Steelwork
European Committee for Standardization
CEN/TC250/SC3

Design of Members

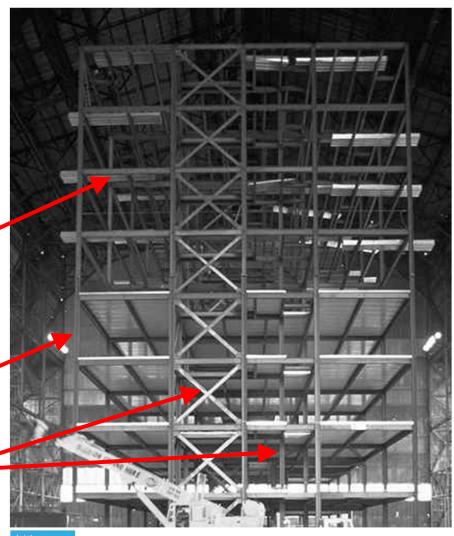
Rui Simões

Department of Civil Engineering University of Coimbra

Contents

- ✓ Introduction
- ✓ Design of columns
- Design of beams
- ✓ Design of beam-columns

INTRODUCTION


Main internal forces and combinations

Bending+Shear

Compression + Bending + Shear

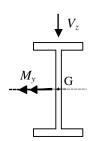
Tension/Compression

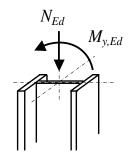
Torsion – less common

Joint Research Centre

Building - master example (Cardington - UK)

INTRODUCTION

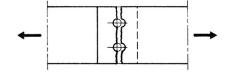

Member design:


- i) resistance of cross sections;
- ii) member buckling resistance.

RESISTANCE OF CROSS SECTIONS

- Cross section classification Class 1; Class 2; Class 3 and Class 4.
- Clause 6.2 of Eurocode 3, part 1.1 provides different approaches, depending of cross section shape, cross section class and type of internal forces (N, M+V, N+M+V,....):
 - elastic criteria (clause 6.2.1(5));

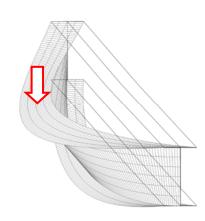
$$\left(\frac{\sigma_{x,Ed}}{f_{y}/\gamma_{M0}}\right)^{2} + \left(\frac{\sigma_{z,Ed}}{f_{y}/\gamma_{M0}}\right)^{2} - \left(\frac{\sigma_{x,Ed}}{f_{y}/\gamma_{M0}}\right)\left(\frac{\sigma_{z,Ed}}{f_{y}/\gamma_{M0}}\right) + 3\left(\frac{\tau_{Ed}}{f_{y}/\gamma_{M0}}\right)^{2} \le 1$$



INTRODUCTION

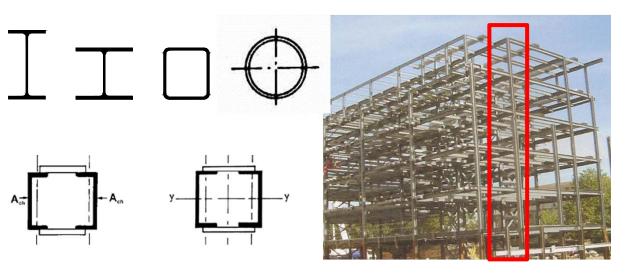
- linear summation of the utilization ratios - class 1/2/3 (clause 6.2.1(7));

$$\frac{N_{Ed}}{N_{Rd}} + \frac{M_{y,Ed}}{M_{y,Rd}} + \frac{M_{z,Ed}}{M_{z,Rd}} \le 1$$


- nonlinear interaction formulas class 1/2 (clause 6.2.1(6)).
- Section properties gross section, net section (deduction for holes) or effective section (class 4 or shear lag effects) (clause 6.2.2 of EC3-1-1).

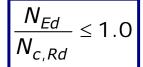
MEMBER BUCKLING RESISTANCE

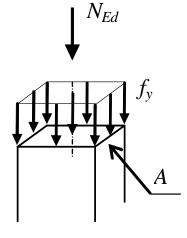
- Buckling resistance (clause 6.3 of Eurocode 3, part 1.1) must be checked in all members submitted to compressive stresses, which are:
 - members under axial compression N;
- members under bending moment M;
- or under a combination of both (M+N).



Column cross sections and applications

Rolled open or closed sections, welded sections or built-up sections — The
objective is to maximize the second moment of area in the relevant buckling
plan in order to maximize the buckling resistance.





Compression resistance (clause 6.2.4 of EC3-1-1)

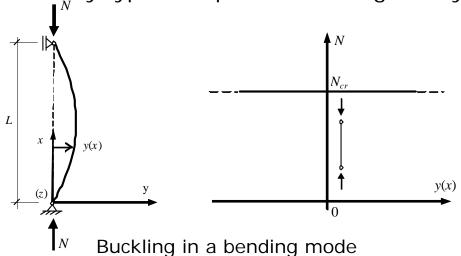
 N_{Ed} is the design value of the axial compression; $N_{c,Rd}$ is the design resistance to axial compression, given by the **minimum of**:

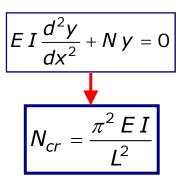
i) Plastic resistance

$$N_{c,Rd} = A f_y / \gamma_{M0}$$
 (class 1, 2 or 3)

$$N_{c,Rd} = A_{eff} f_y / \gamma_{MO}$$
 (class 4)

 A_{eff} - effective area


ii) Buckling resistance – $N_{b,Rd'}$ in general the flexural buckling resistance, which is analysed hereafter.



Column Buckling

• Flexural buckling is in general the buckling mode, which govern the design of a member in pure compression. For this mode in a pinned column, the elastic critical load N_{cr} , defined as the maximum load supported by the column, free from any type of imperfections, is given by the well known Euler's formula:

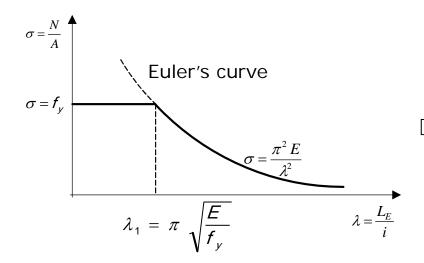
EI – Bending stiffness L – Buckling length (L_E for other support conditions)

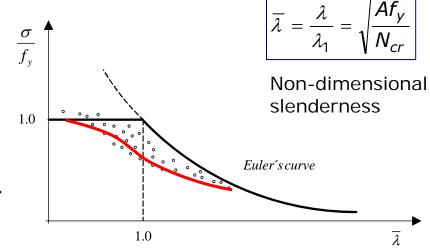
 In specific cases (e.g. members with cruciform cross sections) buckling may occur in other modes: torsional buckling or flexural-torsional buckling.

Column Buckling

$$N_{cr} = \frac{\pi^2 E I}{L_E^2}$$

$$\sigma_{cr} = \frac{\pi^2 E I}{A L_E^2} = \frac{\pi^2 E}{\lambda^2}$$


$$\lambda = \frac{L_E}{i}$$


Slenderness

$$i = \sqrt{\frac{I}{A}}$$

Radius of gyration

$$\sigma_{cr} = \frac{\pi^2 E}{\lambda_1^2} = f_y \implies \lambda_1 = \pi \sqrt{\frac{E}{f_y}}$$

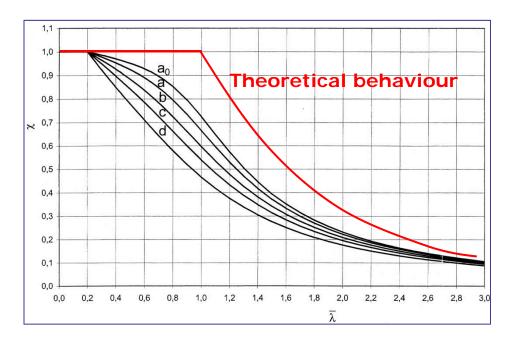
Imperfections or real columns (geometrical imperfections and material imperfections).

Buckling Resistance

(clause 6.3.1 of EC3-1-1)

$$N_{b.Rd} = \chi A f_y / \gamma_{M1}$$
 (Class 1, 2 or 3)

$$N_{b.Rd} = \chi A_{eff} f_y / \gamma_{M1}$$
 (Class 4)


 χ is the **reduction factor** for the relevant buckling mode

$$\chi = \frac{1}{\Phi + \sqrt{\Phi^2 - \overline{\lambda}^2}} \quad \text{but } \chi \le 1.0$$

$$\Phi = 0.5 \left[1 + \alpha \left(\overline{\lambda} - 0.2 \right) + \overline{\lambda}^2 \right]$$

Table 6.1: Imperfection factors for buckling curves

Buckling curve	a ₀	a	b	С	d
Imperfection factor α	0,13	0,21	0,34	0,49	0,76

Neglect BUCKLING if:

loint Research Centre

$$\overline{\lambda} \leq 0.2$$
 or $N_{Ed}/N_{cr} \leq 0.04$

Buckling Resistance

(clause 6.3.1 of EC3-1-1)

Flexural buckling

$$\overline{\lambda} = \sqrt{Af_y/N_{cr}} = \frac{L_{cr}}{i} \frac{1}{\lambda_1}$$
 (Class 1, 2 or 3)

$$\overline{\lambda} = \sqrt{A_{eff}f_y/N_{cr}} = \frac{L_{cr}\sqrt{A_{eff}/A}}{i\lambda_1}$$
 (Class 4)

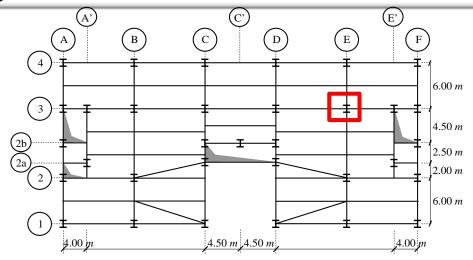
$$\lambda_1 = \pi \sqrt{E/f_y} = 93.9 \varepsilon$$
 $\varepsilon = \sqrt{235/f_y}$

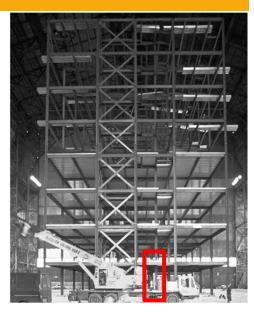
Torsional or flexural-torsional buckling

$$\overline{\lambda}_T = \sqrt{A f_y / N_{cr}}$$
 (Class 1, 2 or 3)

$$\overline{\lambda}_T = \sqrt{A_{eff} f_y / N_{cr}}$$
 (Class 4)

α - buckling in flexural buckling mode about z axis


Table 6.2: Selection of buckling curve for a cross-section

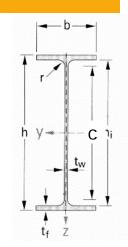

_	Table 0.2. Selection of backling curve for a cross-section						
	Cross section	Limits		Buckling about axis	Bucklin S 235 S 275 S 355 S 420	g curve S 460	
	t _f z		$t_{\rm f}\!\leq 40\;{\rm mm}$	y – y z – z	a b	a ₀ a ₀	
ections	h yy	h/b > 1,2	$40 \text{ mm} < t_f \le 100$	y – y z – z	b c	a a	
Rolled sections		< 1,2	t _f ≤ 100 mm	y – y z – z	b c	a a	
	ż b	5 q/q	t _f > 100 mm	y – y z – z	d d	c c	
ed	*t _r y y **t _r y y y y y y y y y y y y y y y y y y y		$t_{\mathbf{f}}\!\leq 40\;mm$	y – y z – z	b c	b c	
Welded I-sections			t _f > 40 mm	y – y z – z	c d	c d	
Hollow sections			hot finished	any	a	a ₀	
Hol		cold formed		any	с	c	
Welded box sections	h y y y	ge	enerally (except as below)	any	ь	b	
Welde	t _w	thi	ick welds: $a > 0.5t_f$ $b/t_f < 30$ $h/t_w < 30$	any	с	с	
U-, T- and solid sections		-(any	c	с	
L-sections				any	b	b	

EXAMPLE 1

Safety verification of a column member of the building represented in the figure.

Building - master example

i) The inner column E-3 represented in the figure, at base level, is selected. This member has a length of 4.335 m and is composed by a section HEB 340 in steel S 355.


In this column the bending moments (and the shear force) may be neglected; the **design** axial force (compression) obtained from the previous analysis is given by $N_{Ed} = 3326.0 \text{ kN}$.

EXAMPLE 1

ii) Cross section classification – section HEB 340 in pure compression.

Geometric characteristics: $A=170.9~\rm cm^2$, $b=300~\rm mm$, $h=340~\rm mm$, $t_f=21.5~\rm mm$, $t_w=12~\rm mm$, $r=27~\rm mm$, $I_y=36660~\rm cm^4$, $i_y=14.65~\rm cm$, $I_z=9690~\rm cm^4$, $i_z=7.53~\rm cm$. Mechanical properties of the steel: $f_y=355~\rm MPa$ and $E=210~\rm GPa$.

Web in compression (Table 5.2 of EC3-1-1)

$$\frac{c}{t} = \frac{(340 - 2 \times 21.5 - 2 \times 27)}{12} = 20.25 < 33\varepsilon$$
$$= 33 \times 0.81 = 26.73 \quad \text{(class 1)}$$

Class	Part subject to bending	Part subject to compression
Stress distribution in parts (compression positive)	+ + c	f _y c
1	c/t≤72ε	c/t ≤ 33ε

Flange in compression (Table 5.2 of EC3-1-1)

$$\frac{c}{t} = \frac{300/2 - 12/2 - 27}{21.5} = 5.44 < 9\varepsilon = 9 \times 0.81 = 7.29$$
 (class 1)

HEB 340 cross section, steel S 355, in pure compression is class 1.

Class	Part subject to compression
Stress distribution in parts (compression positive)	+ C
1	c / t ≤ 9ε

EXAMPLE 1

iii) Cross section verification - class 1 in pure compression.

$$N_{Ed} = 3326 .0 \text{ kN} < N_{c,Rd} = \frac{A f_y}{\gamma_{M0}} = \frac{170.9 \times 10^{-4} \times 355 \times 10^{3}}{1.0} = 6067.0 \text{ kN}.$$

iv) Buckling resistance.

Buckling lengths - Assuming that the design forces were obtained by a second order structural analysis, the buckling lengths are considered (conservatively) equal to the real lengths (mid-distance between floors), given by:

Buckling in the plan x-z (around y) - $L_{Ey} = 4.335 \,\mathrm{m}$

Buckling in the plan x-y (around z) - $L_{Ez} = 4.335$ m

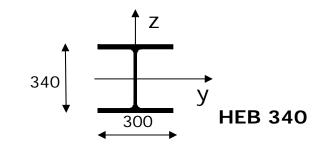
Determination of the slenderness coefficients

$$\lambda_1 = \pi \sqrt{\frac{210 \times 10^6}{355 \times 10^3}} = 76.41$$

$$\lambda_y = \frac{L_{Ey}}{i_y} = \frac{4.335}{14.65 \times 10^{-2}} = 29.59$$
 $\overline{\lambda}_y = \frac{\lambda_y}{\lambda_1} = 0.39$

$$\lambda_{z} = \frac{L_{Ez}}{i_{z}} = \frac{4.335}{7.53 \times 10^{-2}} = 57.57$$

$$\overline{\lambda}_{z} = \frac{\lambda_{z}}{\lambda_{1}} = 0.75$$
Joint Research Centre



EXAMPLE 1

Calculation of the reduction factor χ_{min}

$$\frac{h}{b} = \frac{340}{300} = 1.13 < 1.2$$
 and $t_f = 21.5 \,\text{mm} < 100 \,\text{mm}$

 $\Rightarrow flexural buckling around y - curve b(\alpha = 0.34)$ $flexural buckling around z - curve c(\alpha = 0.49).$

As $\overline{\lambda}_z = 0.75 > \overline{\lambda}_y = 0.39$

and

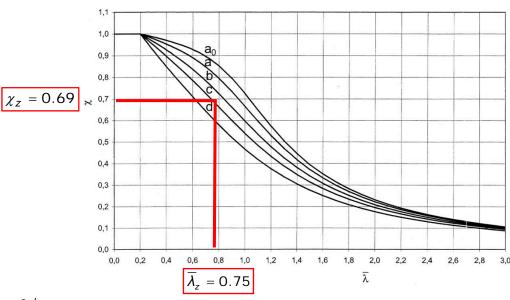
$$\alpha$$
 curve $c > \alpha$ curve b

$$\Rightarrow \chi_{min} => \chi_{z}$$

Table 6.2: Selection of buckling curve for a cross-section

Cross section						g curve
		Limits		Buckling about axis	S 235 S 275 S 355 S 420	S 460
t _f z		> 1,2	$t_{\rm f}\!\leq 40\;mm$	y – y z – z	a b	a ₀ a ₀
ections	h y y	h/b >	$40 \text{ mm} < t_f \le 100$	y – y z – z	b c	a a
Rolled sections h		1,2	$t_{\rm f}\!\leq 100\;mm$	y – y z – z	b c	a a
ż	h/b ≤	$t_{\rm f}$ > 100 mm	y – y z – z	d d	c c	

Research Centre


EXAMPLE 1

$$\Phi_z = 0.5 \left| 1 + \alpha \left(\overline{\lambda_z} - 0.2 \right) + \overline{\lambda_z}^2 \right|$$

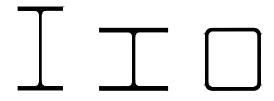
$$\Phi_z = 0.5 \times [1 + 0.49 \times (0.75 - 0.2) + 0.75^2] = 0.92$$

$$\chi_z = \frac{1}{0.92 + \sqrt{0.92^2 - 0.75^2}} = 0.69$$

$$\chi_{min} = \chi_z = 0.69$$

v) Safety verification

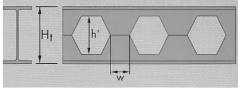
$$N_{b,Rd} = \chi_z A f_y / \gamma_{M1} = 0.69 \times 170.9 \times 10^{-4} \times 355 \times 10^3 / 1.0 = 4186.2 \text{kN}$$


As,
$$N_{Ed} = 3326.0 \,\mathrm{kN} < N_{b,Rd} = 4186.2 \,\mathrm{kN}$$

safety is verified with the cross section HEB 340 in S 355 steel.

Beam cross sections and applications

 A beam may be defined as a member subjected essentially to bending and shear force.

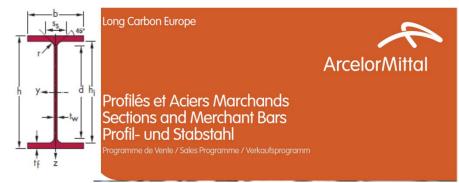

Hot-rolled sections (IPE, HEA or HEB, RHS,....)

Welded sections in non-uniform beams

Castellated beams

Welded sections

Cross section resistance


Uniaxial bending (clause 6.2.5 of EC3-1-1)

$$\frac{M_{Ed}}{M_{c.Rd}} \le 1.0$$

• Class 1 or 2
$$M_{c.Rd} = W_{pl} f_{y} / \gamma_{MO}$$

• Class 3
$$M_{c.Rd} = W_{el.min} f_{y} / \gamma_{MO}$$

• Class 4
$$M_{c.Rd} = W_{eff.min} f_y / \gamma_{MO}$$

Dásissas	dan.			Valeurs	statique	es / Sec	tion pro	perties	/ Statisc	he Kenr	werte		
Désignat Designat Bezeichn	tion		stro	fort y- ng axis y Achse	-у		sc	weak a	ble z-z xis z-z Achse z	-z			
	G kg/m	l _y	W _{sty}	W _{pty} ◆	i, mm	A _{cz}	l _z mm ⁴	W _{eix}	W _{piz} ♦	i _z	S _s	l _t	mm,
		x104	x10 ³	x10 ³	x10	x10 ²	x104	x10 ³	x10 ³	x10		x10 ⁴	x10
IPE AA 240	24,9	3154	267	298	9,97	15,3	231	38,6	60,0	2,70	38,4	7,33	30,
IPE A 240	26,2	3290	278	312	9,94	16,3	240	40,0	62,4	2,68	39,4	8,35	31,
IPE 240	30,7	3892	324	367	9,97	19,1	284	47,3	73,9	2,69	43,4	12,9	37,
IPE O 240	34,3	4369	361	410	10,0	21,4	329	53,9	84,4	2,74	46,2	17,2	43,7
IPE A 270	30,7	4917	368	413	11,2	18,8	358	53,0	82,3	3,02	40,5	10,3	59,
IPE 270	36,1	5790	429	484	11,2	22,1	420	62,2	97,0	3,02	44,6	15,9	70,
IPE O 270	42,3	6947	507	575	11,4	25,2	514	75,5	118	3,09	49,5	24,9	87,

Bi-axial bending (clause 6.2.9 of EC3.1.1)

$$\left[\frac{M_{y,Ed}}{M_{pl,y.Rd}}\right]^{\alpha} + \left[\frac{M_{z,Ed}}{M_{pl,z.Rd}}\right]^{\beta} \le 1.0$$

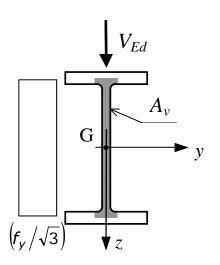
I or H
$$\alpha = 2$$
; $\beta = 5n$ but $\beta \ge 1$

CHS
$$\alpha = \beta = 2$$

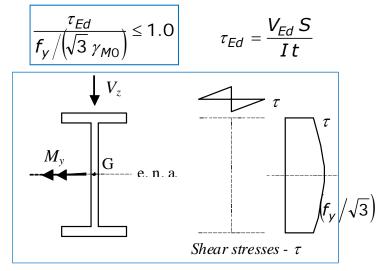
RHS
$$\alpha = \beta = \frac{1.66}{1 - 1.13 n^2}$$
 but $\alpha = \beta \le 6$

$$n = N_{Ed}/N_{pl,Rd}$$

Cross section resistance


Shear (clause 6.2.6 of EC3-1-1)

$$\frac{V_{Ed}}{V_{c,Rd}} \le 1.0$$


PLASTIC RESISTANCE $V_{pl.Rd}$

$$V_{pl.Rd} = A_v \left(f_y / \sqrt{3} \right) / \gamma_{MO}$$

 A_{ν} – Shear area (obtained from clause 6.2.6 (3) of EC3-1-1 or from tables of profiles).

ELASTIC RESISTANCE

• Shear buckling for webs without stiffeners should be verified in accordance with EC3-1-5, if:

$$\frac{h_{w}}{t_{w}} > 72 \frac{\varepsilon}{\eta}$$

$$\varepsilon = \sqrt{235/f_y}$$

 h_{w} and t_{w} are the height and thickness of the web and η is in $\varepsilon = \sqrt{\frac{235}{f_y}}$ accordance with EC3-1-5.

Cross section resistance

Bending and Shear Interaction

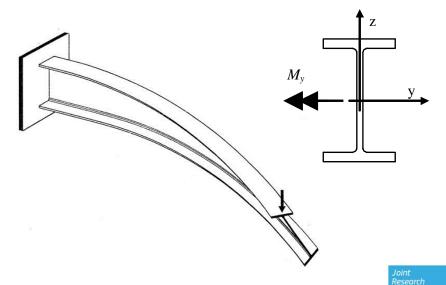
(clause 6.2.8 of EC3-1-1)

$$V_{Fd} \leq 50\% V_{pl,Rd}$$
 NO REDUCTION

 $V_{Ed} > 50\% V_{pl,Rd}$ REDUCED MOMENT

$$f_{yr} = (1 - \rho)f_y$$
 $\rho = (2V_{Ed}/V_{pl.Rd} - 1)^2$

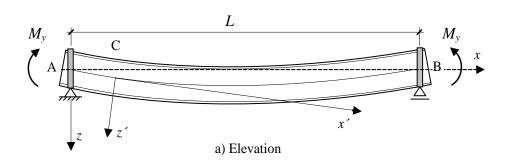
For **I** and **H** cross sections of equal flanges, with bending about the major axis y, the bending moment resistance $M_{y,V,Rd}$ is given by (clause 6.2.8 of EC3-1-1):


$$M_{y,V.Rd} = \left(W_{pl,y} - \frac{\rho A_w^2}{4 t_w}\right) \frac{f_y}{\gamma_{MO}} \le M_{y,c,Rd}$$

$$A_W = h_W t_W$$

Lateral-Torsional Buckling

- Instability phenomenon characterized by the occurrence of large transversal displacements and rotation about the member axis, under bending moment about the major axis (y axis).
- This instability phenomenon involves lateral bending (about z axis) and torsion of cross section.



Lateral-Torsional Buckling

- In the study of lateral-torsional buckling of beams, the **Elastic Critical Moment** M_{cr} plays a fundamental role; this quantity is defined as the maximum value of bending moment supported by a beam, free from any type of imperfections.
- For a simple supported beam with a double symmetric section, with supports prevent lateral displacements and rotation around member axis (twist rotations), but allowing warping and rotations around cross section axis (y and z), submitted to a uniform bending moment M_y ("standard case"), the **elastic critical moment** is given by:

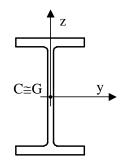
$$M_{Cr}^{E} = \frac{\pi}{L} \sqrt{G I_{T} E I_{z} \left(1 + \frac{\pi^{2} E I_{w}}{L^{2} G I_{T}}\right)}$$

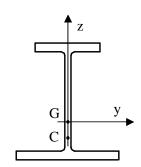
Which depend mainly of:

Loading and support conditions;

Length between lateral braced sections (L);

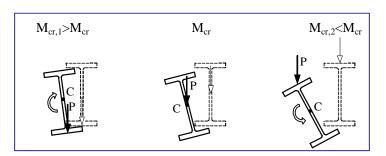
Lateral bending stiffness $(E I_z)$;


Torsional stiffness (GI_T);


Warping stiffness ($E I_w$).

Lateral-Torsional Buckling

Elastic critical moment



$$M_{cr} = C_1 \frac{\pi^2 E I_z}{(k_z L)^2} \left\{ \left[\left(\frac{k_z}{k_w} \right)^2 \frac{I_W}{I_z} + \frac{(k_z L)^2 G I_T}{\pi^2 E I_z} + (C_2 z_g - C_3 z_j)^2 \right]^{0.5} - (C_2 z_g - C_3 z_j) \right\}$$

$$Z_g = (Z_a - Z_s)$$

$$z_j = z_s - \left(0.5 \int_A (y^2 + z^2) z \, dA\right) / I_y$$

- applicable to member with symmetric and mono-symmetric cross sections,
- include the effects of the loading applied below or above the shear centre;
- several degrees of restriction to lateral bending (k_z) and warping (k_w) ;
- several shapes of bending moment diagram (C_1 , C_2 and C_3 in the next tables).

Lateral-Torsional Buckling

Loading and support conditions	Diagram of moments	k_z	<i>C</i> ₁	C_2	C ₃
p p		1.0 0.5	1.12 0.97	0.45 0.36	0.525 0.478
↓ P		1.0 0.5	1.35 1.05	0.59 0.48	0.411 0.338
P P P A A A A A A		1.0 0.5	1.04 0.95	0.42 0.31	0.562 0.539

Elastic critical moment

- Publication n° 119 do ECCS (Boissonnade et al. 2006).
- LTBeam software http://www.cticm.com

Loading and	Diagram of	k_z	C_1		C ₃	
support conditions	moments			$\psi_f \leq 0$	$\psi_f > 0$	
	Ψ=+1	1.0	1.00	1.000		
		0.5	1.05	1.	019	
	$\Psi = +3/4$	1.0	1.14	1.	000	
		0.5	1.19	1.	017	
	$\Psi = +1/2$	1.0	1.31	1.	000	
		0.5	1.37	1.000		
	Ψ = +1/4	1.0	1.52	1.000		
		0.5	1.60	1.000		
	Ψ=0	1.0	1.77	1.000		
		0.5	1.86	1.000		
$\{ \frac{M}{\Psi} \}$	$\Psi = -1/4$	1.0	2.06	1.000	0.850	
` m = *		0.5	2.15	1.000	0.650	
	$\Psi = -1/2$	1.0	2.35	1.000	$1.3 - 1.2 \psi_f$	
		0.5	2.42	0.950	$0.77 - \psi_f$	
	$\Psi = -3/4$	1.0	2.60	1.000	$0.55 - \psi_f$	
	9 = -3/4	0.5	2.45	0.850	$0.35 - \psi_f$	
	Ψ = -1		2.60	$-\psi_f$	$-\psi_f$	
	Ψ=-1	0.5	2.45	$-0.125-0.7\psi_f$	$-0.125-0.7\psi_f$	

Lateral-Torsional Buckling

Lateral-torsional buckling resistance (clause 6.3.2 of EC3-1-1)

$$\frac{M_{Ed}}{M_{b.Rd}} \le 1.0$$

$$M_{b.Rd} = \chi_{LT} W_y f_y / \gamma_{M1}$$

$$W_y = W_{pl.y}$$
 Class 1 and 2;

$$W_v = W_{el.v}$$
 Class 3;

$$W_y = W_{eff.y}$$
 Class 4.

 χ_{LT} is the **reduction factor** for lateral-torsional buckling, which can be calculated by one of two methods, depending of member cross section.

Lateral-Torsional Buckling

i) General method

$$\chi_{LT} = \frac{1}{\Phi_{LT} + \left(\Phi_{LT}^2 - \overline{\lambda}_{LT}^2\right)^{0.5}}$$

$$\chi_{LT} \leq 1.0$$

 $\Phi_{LT} = 0.5 \left[1 + \alpha_{LT} \left(\overline{\lambda}_{LT} - 0.2 \right) + \overline{\lambda}_{LT}^{2} \right]$

Table 6.3: Recommended values for imperfection factors for lateral torsional buckling curves

Buckling curve	a	b	c	d
Imperfection factor α _{LT}	0,21	0,34	0,49	0,76

$$\overline{\lambda}_{LT} = \left[W_y f_y / M_{cr} \right]^{0.5}$$

 M_{cr} - Elastic critical moment

Table 6.4 - Buckling curves for lateral-torsional buckling (General method)

Section	Limits	Buckling curve
I or H sections	$h/b \le 2$	a
rolled	h/b > 2	b
I or H sections	$h/b \le 2$	с
welded	h/b > 2	d
Other sections	11	d

Lateral-Torsional Buckling

ii) Alternative method (rolled sections or equivalent welded sections)

$$\chi_{LT} = \frac{1}{\Phi_{LT} + \left(\Phi_{LT}^2 - \beta \overline{\lambda}_{LT}^2\right)^{0.5}} \qquad \chi_{LT} \le 1.0$$

$$\chi_{LT} \le 1/\overline{\lambda}_{LT}^2$$

$$\chi_{LT} \le 1.0$$

$$\chi_{LT} \le 1/\overline{\lambda}_{LT}^2$$

$$\overline{\lambda}_{LT,0} \le 0.4$$
 $\beta \ge 0.75$

$$\Phi_{LT} = 0.5 \left[1 + \alpha_{LT} \left(\overline{\lambda}_{LT} - \overline{\lambda}_{LT,0} \right) + \beta \overline{\lambda}_{LT}^{2} \right]$$

(may be specified in National Annexes of Eurocode 3)

$$\overline{\lambda}_{LT} = \left[W_y f_y / M_{cr} \right]^{0.5}$$

M_{cr} - Elastic critical moment

Table 6.5 - Buckling curves for lateral-torsional buckling (Alternative method)

Section	Limits	Buckling curve (EC3-1-1)
I or H sections	$h/b \le 2$	ь
rolled	h/b > 2	с
I or H sections	$h/b \le 2$	с
welded	h/b > 2	d

Lateral-Torsional Buckling

$$\chi_{LT, \text{mod}} = \frac{\chi_{LT}}{f}$$

$$\chi_{LT, \text{mod}} \leq 1.0$$

$$f = 1 - 0.5 (1 - k_c) \left[1 - 2.0 (\overline{\lambda}_{LT} - 0.8)^2 \right]$$

$$f \le 1.0$$

Neglect LTB if:

$$\overline{\lambda}_{LT} \leq \overline{\lambda}_{LT,0}$$

$$M_{Ed}/M_{cr} \leq \overline{\lambda}_{LT,0}^2$$

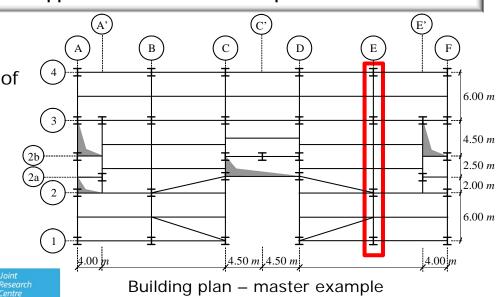
Diagram of bending moments	k_c
$\Psi = +1$	1.0
-1≤Ψ≤1	$\frac{1}{1.33-0.33\Psi}$
M M_0 ΨM	
	0.94
	0.90
	0.91
M W W	
	0.86
	0.77
	0.82
Ψ - ratio between end moments, with	-1≤Ψ≤1.

EXAMPLE 2

Safety check of a beam of the building illustrated in the figure (along line E). The beam is composed by a IPE 600 with 9 m length at the central span; the lateral spans with 6 m length (the governing spans) are composed by a section IPE 400 in steel S 355. For the lateral buckling check, two cases are considered:

- a) a beam with 6 m length, laterally braced only at the end support sections;
- b) a beam with 6 m length, laterally braced at the end support sections and at mid-span section.

The geometrical and mechanical properties of the section IPE 400 in S 355 steel are:


 $A = 84.46 \text{ cm}^2$, b = 180 mm, h = 400 mm,

 $t_f = 13.5 \text{ mm}, t_w = 8.6 \text{ mm}, I_v = 23130 \text{ cm}^4,$

 $i_v = 16.55 \text{ cm}, I_z = 1318 \text{ cm}^4, i_z = 3.95 \text{ cm},$

 $I_T = 51.08 \text{ cm}^4$; Iw = 490x10³ cm⁶;

 $f_v = 355$ MPa and E = 210 GPa.

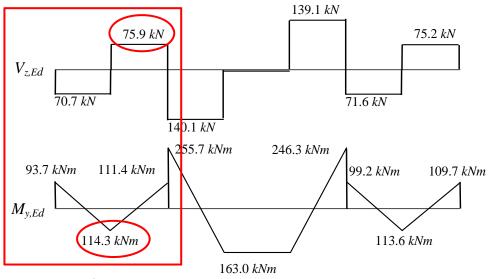
European

Commission

EXAMPLE 2

- a) Beam laterally braced at supports
- i) The internal forces (neglecting the axial force) are represented in the figure. The design values are $M_{Ed} = 114.3 \text{ kNm}$ and $V_{Ed} = 75.9 \text{ kN}$.
- ii) Cross section classification

Web (an internal part) in bending:


$$\frac{c}{t} = \frac{331}{8.6} = 38.49 < 72 \ \varepsilon = 72 \times 0.81 = 58.32$$

Flange (outstand part) in compression:

$$\frac{c}{t} = \frac{(180 - 2 \times 21 - 8.6)/2}{13.5} = 4.79 < 9 \varepsilon = 9 \times 0.81 = 7.29$$

The cross section is class 1

Class	Part subject to bending		
Stress distribution	f _y	Class	Part subject to compression
in parts (compression positive)	c f _y	Stress distribution in parts (compression	+ C
1	$c/t \le 72\varepsilon$	positive)	c/t≤9ε

EXAMPLE 2

iii) Cross section verification

Bending resistance:

$$M_{Ed} = 114.3 \text{ kNm} < W_{pl,y} f_y / \gamma_{MO} = 1307 \times 10^{-6} \times 355 \times 10^{3} / 1.0 = 464.0 \text{ kNm}$$

Shear resistance:

$$V_{Ed} = 75.9 \text{ kN} < V_{pl,Rd} = \frac{A_v f_y}{\gamma_{MO} \sqrt{3}} = \frac{42.69 \times 10^{-4} \times 355 \times 10^3}{1.0 \times \sqrt{3}} = 875.0 \text{ kN}$$

$$\frac{h_{w}}{t_{w}} = \frac{373.0}{8.6} = 43.4 < 72 \frac{\varepsilon}{\eta} = 72 \times \frac{0.81}{1.0} = 58.3$$

So, it is not necessary to verify the shear buckling resistance.

Bending + Shear:

$$V_{Ed} = 75.9 \text{ kN} < 0.50 \times V_{pl,Rd} = 0.50 \times 875.0 = 437.5 \text{ kN}$$

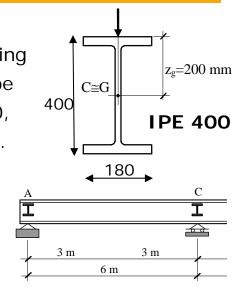
So, it is not necessary to reduce the bending resistance to account for the shear force.

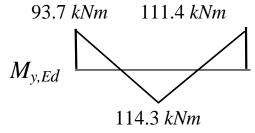
Cross section resistance is verified.

EXAMPLE 2

iv) Lateral buckling resistance

Assuming the support conditions of the "standard case" and the loading applied at the upper flange level, the **elastic critical moment** can be obtained from the following equation, with L=6.00 m, $k_z=k_w=1.0$, $C_1\approx 1.80$ and $C_2\approx 1.60$ (Boissonnade et al., 2006) and $z_g=200$ mm.


$$M_{cr} = C_1 \frac{\pi^2 E I_z}{(k_z L)^2} \left\{ \left[\left(\frac{k_z}{k_w} \right)^2 \frac{I_W}{I_z} + \frac{(k_z L)^2 G I_T}{\pi^2 E I_z} + (C_2 Z_g - C_3 Z_j)^2 \right]^{0.5} - (C_2 Z_g - C_3 Z_j) \right\}$$


Critical Moment

$$M_{cr} = 164.7 \, kNm$$

(Using LTBeam $\rightarrow M_{cr} = 175.64 \text{ kNm}$)

$$\Psi = 93.7/111.4 = 0.84$$

EXAMPLE 2

$$M_{cr} = 164.7 \, kNm$$
; $W_y = W_{pl,y} = 1307 \, cm^3 \implies \overline{\lambda}_{LT} = 1.68$

$$\overline{\lambda}_{LT} = \left[W_y \, f_y / M_{cr} \right]^{0.5}$$

General method:

Rolled cross section IPE 400 with

$$h/b=400/180=2.2>2$$
 - Curve b

$$\Rightarrow$$
 $\alpha_{LT} = 0.34$

$$\Phi_{IT} = 2.16$$

$$\Rightarrow \chi_{LT} = 0.28$$

$$M_{b,Rd} = 0.28 \times 1307 \times 10^{-6} \times \frac{355 \times 10^{3}}{1.0} = 129.9 \text{ kNm} > 114.3 \text{ kNm}$$

So, the safety is verified (utilization ratio = 114.3/129.9=0.88).

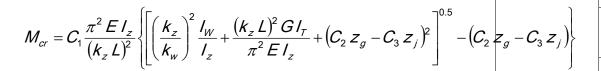
Table 6.4 - Buckling curves for lateral-torsional buckling (General method)

	Limits Dualding surre			
Section	Limits	Buckling curve		
I or H sections	$h/b \le 2$	а		
rolled	h/b > 2	b		
I or H sections	$h/b \le 2$	С		
welded	h/b > 2	d		
Other sections		d		

Buckling curve	a	b	c	d
Imperfection factor α_{LT}	0,21	0,34	0,49	0,76

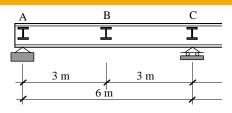
$$\Phi_{LT} = 0.5 \left[1 + \alpha_{LT} \left(\overline{\lambda}_{LT} - 0.2 \right) + \overline{\lambda}_{LT}^{2} \right]$$

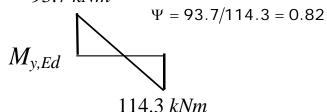
$$\chi_{LT} = \frac{1}{\Phi_{LT} + \left(\Phi_{LT}^2 - \overline{\lambda}_{LT}^2\right)^{0.5}}$$



EXAMPLE 2

- b) Beam laterally braced at supports and mid-span
- i) Cross section verifications are not changed.
- ii) Lateral buckling check:


As the beam is laterally braced at mid span cross section, the **critical moment** can be evaluated with L = 3.00 m and a conservative hypothesis of $k_z = k_w = 1.0$. For the given bending moment shape between lateral braced cross sections, $C_1 = 2.6$ (Boissonnade et al., 2006).


 $M_{cr} = 1778.8 \, kNm$

(Using LTBeam – M_{cr} = 1967.7 kNm)

93.7 *kNm*

		1		
$\Psi = -1/4$	1.0	2.06	1.000	0.850
	0.5	2.15	1.000	0.650
$\Psi = -1/2$	1.0	2.35	1.000	$1.3 - 1.2 \psi_f$
	0.5	2.42	0.950	$0.77 - \psi_f$
$\Psi = -3/4$	1.0	2.60	1.000	$0.55 - \psi_f$
	0.5	2.45	0.850	$0.35 - \psi_f$
	_			
$\Psi = -1$	1.0	2.60	$-\psi_f$	$-\psi_f$
	0.5	2.45	$-0.125-0.7 \psi_{f}$	$-0.125-0.7\psi_{s}$

EXAMPLE 2

$$M_{cr} = 1778.8 \, kNm; \quad W_y = W_{pl,y} = 1307 \, cm^3 \quad \Rightarrow \quad \overline{\lambda}_{LT} = 0.51$$

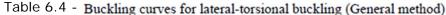
$$\rightarrow \frac{\overline{\lambda}_{LT}}{\lambda_{LT}} = 0.5^{\circ}$$

$$\overline{\lambda}_{LT} = \left[W_y \, f_y / M_{cr} \right]^{0.5}$$

General method:

Rolled cross section IPE 400 with

$$h/b = 400/180 = 2.2 > 2$$
 - Curve b


$$\Rightarrow$$
 $\alpha_{LT} = 0.34$

$$\Phi_{IT} = 0.68$$

$$\Rightarrow \chi_{LT} = 0.89$$

 $M_{b,Rd} = 0.89 \times 1307 \times 10^{-6} \times \frac{355 \times 10^{3}}{1.0} = 412.9 \text{ kNm} > 114.3 \text{ kNm}$

So, the safety is verified (utilization ratio = 114.3/412.9=0.28).

Section	Limits	Buckling curve
I or H sections	h/b ≤ 2	a
rolled	h/b > 2	b
I or H sections	$h/b \le 2$	С
welded	h/b > 2	d
Other sections		d

Buckling curve	a	ь	С	d
Imperfection factor α_{LT}	0,21	0,34	0,49	0,76

$$\Phi_{LT} = 0.5 \left[1 + \alpha_{LT} \left(\overline{\lambda}_{LT} - 0.2 \right) + \overline{\lambda}_{LT}^{2} \right]$$

$$\chi_{LT} = \frac{1}{\Phi_{LT} + \left(\Phi_{LT}^2 - \overline{\lambda}_{LT}^2\right)^{0.5}}$$

DESIGN OF BEAM-COLUMNS

Cross section resistance (clause 6.2.9 of EC3-1-1)

Class 1 or 2 – Uniaxial bending

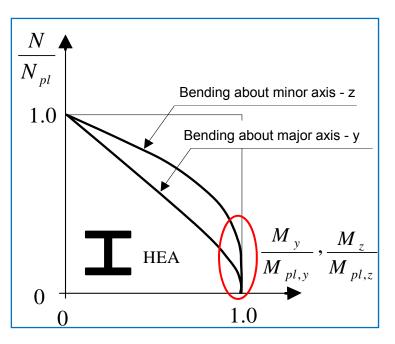
$$M_{Ed} \leq M_{N,Rd}$$

Double-symmetric I or H sections

$$M_{N,y,Rd} = M_{pl,y,Rd} \frac{1-n}{1-0.5 \cdot a}$$
 but $M_{N,y,Rd} \le M_{pl,y,Rd}$

$$M_{N,z,Rd} = M_{pl,z,Rd}$$
 if $n \le a$

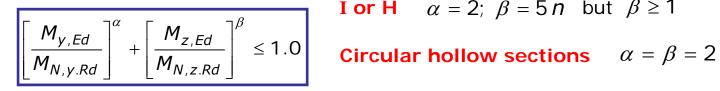
$$M_{N,z,Rd} = M_{pl,z,Rd} \left[1 - \left(\frac{n-a}{1-a} \right)^2 \right]$$
 if $n > a$


$$n = N_{Ed}/N_{pl.Rd}$$
 $a = (A - 2bt_f)/A \le 0.50$

No reduction if

$$N_{Ed} \le h_w t_w f_y / \gamma_{MO}$$
 (z axis)

$$N_{Ed} \le 0.25 N_{pl,Rd}$$
 $N_{Ed} \le 0.5 h_w t_w f_y / \gamma_{MO}$ (y axis)


Joint Research Centre

Cross section resistance (clause 6.2.9 of EC3-1-1)

Class 1 or 2 – Bi-axial bending

$$n = N_{Ed}/N_{pl,Rd}$$

I or H $\alpha = 2$; $\beta = 5 n$ but $\beta \ge 1$

Rectangular hollow sections
$$\alpha = \beta = \frac{1.66}{1 - 1.13 n^2} \le 6$$

Class 3 or 4

$$\sigma_{x,Ed} \leq \frac{f_y}{\gamma_{MO}}$$

$$\sigma_{x,Ed} = \frac{N_{Ed}}{A} + \frac{M_{y,Ed}}{I_y} z + \frac{M_{z,Ed}}{I_z} y$$

Bending, shear and axial force (clause 6.2.10 of EC3-1-1) – Similar to bending and shear interaction.

 $_{\nearrow}e_{N,y}N_{Ed}$ (class 4)

DESIGN OF BEAM-COLUMNS

Member stability

Members with high slenderness subjected to bending and compression, may fail by flexural buckling or lateral-torsional buckling.

Flexural buckling and lateral-torsional buckling (doubly-symmetric cross-section):

$$\frac{N_{Ed}}{\chi_{y} N_{Rk} / \gamma_{M1}} + k_{yy} \frac{M_{y.Ed} + \Delta M_{y,Ed}}{\chi_{LT} M_{y,Rk} / \gamma_{M1}} + k_{yz} \frac{M_{z.Ed} + \Delta M_{z,Ed}}{M_{z,Rk} / \gamma_{M1}} \le 1.0$$
 (Eq. 6.61 of EC3-1-1)

$$\frac{N_{Ed}}{\chi_{z} N_{Rk}/\gamma_{M1}} + k_{zy} \frac{M_{y.Ed} + \Delta M_{y,Ed}}{\chi_{LT} M_{y.Rk}/\gamma_{M1}} + k_{zz} \frac{M_{z.Ed} + \Delta M_{z,Ed}}{M_{z.Rk}/\gamma_{M1}} \le 1.0$$
 (Eq. 6.62 of EC3-1-1)

 $k_{yy'}$ $k_{yz'}$ k_{zy} and k_{zz} - interaction factors, which are dependent of instability phenomena and plasticity – **Annex A** of EC3-1-1 (Method 1) or **Annex B** (Method 2).

Member stability

- i) Members with closed hollow sections or open sections restrained to torsion are **not susceptible** to torsional deformation.
- ii) Members with open sections (I or H sections) are **susceptible** to torsional deformation.

Members not susceptible to torsional deformation – checking of flexural buckling against *y-axis* and *z-axis*, considering eqs. (6.61) and (6.62) with $\chi_{LT} = 1.0$ and interaction factors k_{yy} , k_{yz} , k_{zy} and k_{zz} in members not susceptible to torsional deformation.

Members susceptible to torsional deformation – checking of lateral-torsional buckling, considering eqs (6.61) and (6.62) with χ_{LT} according to 6.3.2 of EC3-1-1 and interaction factors k_{yy} , k_{yz} , k_{zy} and k_{zz} in members susceptible to torsional deformation.

Member stability

Method 2 (Annex B of EC3-1-1)

Interaction factors for members **not susceptible** to torsional deformations
(Table B.1 of EC3-1-1).

	_			
Interaction	J.	Elastic sectional properties	Plastic sectional properties	
factors	section	(Class 3 or 4 sections)	(Class 1 or 2 sections)	
k_{yy}	I or H sections and	$C_{my} \left(1 + 0.6 \overline{\lambda}_y \frac{N_{Ed}}{\chi_y N_{Rk} / \gamma_{M1}} \right)$	$C_{my} \left(1 + \left(\overline{\lambda}_y - 0.2 \right) \frac{N_{Ed}}{\chi_y N_{Rk} / \gamma_{M1}} \right)$	
	rectangular hollow sections	$\leq C_{my} \left(1 + 0.6 \frac{N_{Ed}}{\chi_y N_{Rk} / \gamma_{M1}} \right)$	$\leq C_{my} \left(1 + 0.8 \frac{N_{Ed}}{\chi_y N_{Rk} / \gamma_{M1}} \right)$	
	I or H			
	sections and	k_{zz}	0.6 k _{zz}	
k_{yz}	rectangular			
	hollow			
	sections			
1_	I or H sections and	0.87	0.64	
k_{zy}	rectangular	0.8 k _{yy}	$0.6k_{yy}$	
	hollow			
	sections			
k ₂₂	I or H	$C \left(1.067 N_{Ed}\right)$	$C_{mz} \left(1 + \left(2 \overline{\lambda}_z - 0.6 \right) \frac{N_{Ed}}{\chi_z N_{Rk} / \gamma_{M1}} \right)$ $\leq C_{mz} \left(1 + 1.4 \frac{N_{Ed}}{\chi_z N_{Rk} / \gamma_{M1}} \right)$	
	sections	$C_{mz} \left(1 + 0.0 \lambda_z \frac{\chi_z N_{Rk} / \gamma_{M1}}{\chi_z N_{Rk} / \gamma_{M1}} \right)$	$\leq C_{mz} \left(1 + 1.4 \frac{N_{Ed}}{\chi_z N_{Rk} / \gamma_{M1}} \right)$	
	rectangular	$\leq C_{mz} \left(1 + 0.6 \frac{N_{Ed}}{\gamma_* N_{Rk} / \gamma_{MQ}} \right)$	$C_{mz} \left(1 + (\overline{\lambda}_z - 0.2) \frac{N_{Ed}}{\chi_z N_{Rk}/\gamma_{M1}}\right)$ $\leq C_{mz} \left(1 + 0.8 \frac{N_{Ed}}{\chi_z N_{Rk}/\gamma_{M1}}\right)$	
	hollow sections	, n= m;(m1)	$\leq C_{mz} \left(1 + 0.8 \frac{N_{Ed}}{\chi_z N_{Rk} / \gamma_{M1}} \right)$	

In I or H sections and rectangular hollow sections under axial compression and uniaxial bending $(M_{v,Ed})$, k_{zv} may be taken as zero.

Member stability

Method 2 (Annex B of EC3-1-1)

Interaction factors for members **susceptible** to torsional deformations (Table B.2 of EC3-1-1).

Interaction factors	Elastic sectional properties (Class 3 or 4 sections)	Plastic sectional properties (Class 1 or 2 sections)	
k_{yy}	k_{yy} of Table 3.16	k _w of Table 3.16	
k_{yz}	k _{yz} of Table 3.16	k_{yz} of Table 3.16	
k _{zy}	$ \left[1 - \frac{0.05\overline{\lambda}_{z}}{(C_{mLT} - 0.25)} \frac{N_{Ed}}{\chi_{z} N_{Rk}/\gamma_{M1}}\right] \\ \geq \left[1 - \frac{0.05}{(C_{mLT} - 0.25)} \frac{N_{Ed}}{\chi_{z} N_{Rk}/\gamma_{M1}}\right] $	$\begin{split} & \left[1 - \frac{0.1 \overline{\lambda_{z}}}{(C_{mLT} - 0.25)} \frac{N_{Ed}}{\chi_{z} N_{Rk} / \gamma_{M1}} \right] \\ \ge & \left[1 - \frac{0.1}{(C_{mLT} - 0.25)} \frac{N_{Ed}}{\chi_{z} N_{Rk} / \gamma_{M1}} \right] \\ & \text{for } \overline{\lambda_{z}} < 0.4 : k_{zy} = 0.6 + \overline{\lambda_{z}} \\ \le & 1 - \frac{0.1 \overline{\lambda_{z}}}{(C_{mLT} - 0.25)} \frac{N_{Ed}}{\chi_{z} N_{Rk} / \gamma_{M1}} \end{split}$	
k_{zz}	k _{zz} of Table 3.16	k _{zz} of Table 3.16	

Member stability

Method 2 (Annex B of EC3-1-1)

Equivalent factors of uniform moment C_{mi} (Table B.3 of EC3-1-1)

- Equivalent factors of uniform moment Cmi

Diagram of	Range		C_{my} , C_{mz} and C_{mLT}		
moments			Uniform loading	Concentrated load	
$ \begin{array}{c c} M & & & & & & \\ \hline & & & & & & & \\ \hline & & & &$		Ψ ≤ 1	$0.6 + 0.4\Psi \ge 0.4$		
M_h ψM_h	$0 \le \alpha_s \le 1$	-1≤Ψ≤1	$0.2 + 0.8\alpha_z \ge 0.4$	$0.2 + 0.8 \alpha_z \ge 0.4$	
M_s	$-1 \le \alpha_s < 0$	0≤Ψ≤1	$0.1 - 0.8 \alpha_s \ge 0.4$	$-0.8\alpha_{s} \ge 0.4$	
$\alpha_s = M_s/M_h$		-1≤Ψ<0	$0.1(1-\Psi)-0.8\alpha_z \ge 0.4$	$0.2(-\Psi) - 0.8\alpha_s \ge 0.4$	
M_h W W	$0 \le \alpha_h \le 1$	$-1 \leq \Psi \leq 1$	$0.95 + 0.05\alpha_h$	$0.90 + 0.10\alpha_h$	
M_{i}	$-1 \le \alpha_h < 0$	$0 \le \Psi \le 1$	$0.95 + 0.05 \alpha_h$	$0.90 + 0.10\alpha_h$	
$\alpha_h = M_h/M_s$		-1≤Ψ<0	$0.95 + 0.05 \alpha_h (1 + 2\Psi)$	$0.90 + 0.10 \alpha_h (1 + 2 \Psi)$	

In the calculation of α_s or α_h parameters, a hogging moment should be taken as negative and a sagging moment should be taken as positive.

For members with sway buckling mode, the equivalent uniform moment factor should be taken as $C_{mn} = 0.9$ or $C_{mn} = 0.9$, respectively.

Factors C_{my} , C_{mz} and C_{mLT} should be obtained from the diagram of bending moments between the relevant braced sections, according to the following:

Moment factor	bending axis	points braced in direction	
C_{my}	<i>y-y</i>	Z-Z	
C_{mz}	z- z	<i>y-y</i>	
C_{mLT}	у-у	у-у	

Centre

EXAMPLE 3

Safety check of a beam-column of the first storey of the building illustrated in the figure. The member, composed by a HEB 320 cross section in steel S 355, has a length of 4.335.

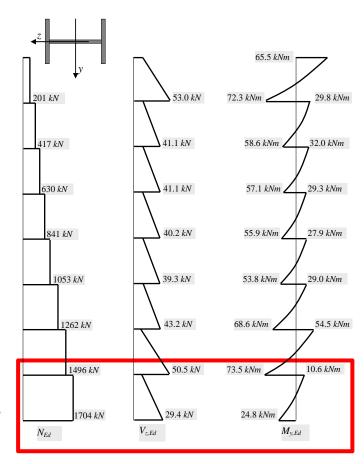
The relevant geometric characteristics of HEB 320 cross section are: $A = 161.3 \text{ cm}^2$; $W_{pl,y} = 2149 \text{ cm}^3$,

 $I_{y} = 30820 \text{ cm}^{4}$, $i_{y} = 13.82 \text{ cm}$; $I_{z} = 9239 \text{ cm}^{4}$,

 $i_z = 7.57 \text{ cm}$; $I_T = 225.1 \text{ cm}^4 \text{ and } I_W = 2069 \text{ x } 10^3 \text{ cm}^6$.

The mechanical characteristics of the material are:

 $f_y = 355$ MPa, E = 210 GPa and G = 81 GPa.


EXAMPLE 3

The design internal forces obtained through the structure analysis (second order) for the various load combinations are illustrated in the figure. Two simplification are assumed for the subsequent design verifications: i) the shear force is sufficient small so can be neglected; ii) the shape of the bending moment diagram is linear.

Design values are: $N_{Ed} = 1704 \text{ kN}$; $M_{y,Ed} = 24.8 \text{ kNm}$ at the base cross section.

i) Cross section classification

As the compression force is high, the cross section is classified under compression only (conservative approach). As the section HEB 320 is a stocky section, even under this load condition, is **class 1**.

 N_{Ed}

 $M_{y,Ed}$

DESIGN OF BEAM-COLUMNS

EXAMPLE 3

ii) Cross section resistance

The design internal forces: $M_{y,Ed} = 24.6 \text{ kNm}$ and $N_{Ed} = 1704 \text{ kN}$ (compression).

$$N_{pl,Rd} = A f_y / \gamma_{MO} = 161.3 \times 10^{-4} \times 355 \times 10^{3} / 1.0 = 5726.2 \text{kN}$$

As, $N_{Ed} = 1704 \, kN < N_{pl,Rd} = 5726.2 \, kN$, the axial force resistance is verified.

Since,
$$N_{Ed} = 1704 \text{kN} > 0.25 N_{pl,Rd} = 1431.5 \text{kN}$$
,

in accordance with clause 6.2.9.1(4) of EC3-1-1, it is necessary to reduce the **plastic bending resistance** (to $M_{N,y,Rd}$):

$$M_{pl,y,Rd} = \frac{W_{pl,y} f_y}{\gamma_{Mo}} = \frac{2149 \times 10^{-6} \times 355 \times 10^3}{1.0} = 762.9 \, kNm$$

$$M_{N,y,Rd} = M_{pl,y,Rd} \frac{1 - n}{1 - 0.5.8}$$

$$a = \frac{A - 2bt_f}{A} = \frac{161.3 - 2 \times 30 \times 2.05}{161.3} = 0.24$$

$$n = \frac{N_{Ed}}{N_{pl,Rd}} = \frac{1704}{5726.2} = 0.30$$

As, $M_{y,Ed} = 24.8 \, kNm < M_{N,y,Rd} = 606.9 \, kNm$, the bending resistance is verified.

EXAMPLE 3

iii) Verification of the stability of the member

In this example the Method 2 is applied. As the member is susceptible to torsional deformations (thin-walled open cross section), it is assumed that lateral-torsional buckling constitutes the relevant instability mode. Since $M_{z,Ed} = 0$, the following conditions must be verified:

$$\frac{N_{Ed}}{\chi_{y} N_{Rk}/\gamma_{M1}} + K_{yy} \frac{M_{y,Ed}}{\chi_{LT} M_{y,Rk}/\gamma_{M1}} \leq 1.0$$

$$\frac{N_{Ed}}{\chi_z N_{Rk}/\gamma_{M1}} + k_{zy} \frac{M_{y,Ed}}{\chi_{LT} M_{y,Rk}/\gamma_{M1}} \le 1.0$$

Step 1: characteristic resistance of the cross section

$$N_{Rk} = A f_y = 161.3 \times 10^{-4} \times 355 \times 10^3 = 5726.2 \,\mathrm{kN}$$

$$M_{v,Rk} = W_{pl,v} f_v = 2149 \times 10^{-6} \times 355 \times 10^3 = 762.9 \,\mathrm{kNm}$$

EXAMPLE 3

Step 2: reduction coefficients due to flexural buckling, χ_v and χ_z

$$\frac{h}{b} = \frac{320}{300} = 1.07 < 1.2$$
 and $t_f = 20.5 \,\text{mm} < 100 \,\text{mm}$

flexural buckling around y – curve b (α = 0.34) flexural buckling around z – curve c (α = 0.49).

Plane
$$xz - L_{E,y} = 4.335 m$$
.

$$\bar{\lambda}_y = \frac{L_{E,y}}{i_y} \frac{1}{\lambda_1} = \frac{4.335}{13.82 \times 10^{-2}} \times \frac{1}{93.9 \times 0.81} = 0.41$$

$$\Phi_y = 0.62$$
 \Rightarrow $\chi_y = 0.92$

Plane xy -
$$L_{E,z} = 4.335 m$$

$$\overline{\lambda}_z = \frac{L_{E,z}}{i_z} \frac{1}{\lambda_1} = \frac{4.335}{7.57 \times 10^{-2}} \times \frac{1}{93.9 \times 0.81} = 0.75$$

$$\Phi_z = 0.92$$
 \Rightarrow $\chi_z = 0.69$



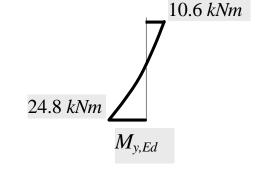
Table 6.2: Selection of buckling curve for a cross-section

	Cross section		Limits	Buckling about axis	S 235 S 275 S 355 S 420	g curve S 460
	t _f z	> 1,2	t _f ≤ 40 mm	y – y z – z	a b	a ₀ a ₀
ections	h y	√q/q	40 mm < t _c < 100	y – y z – z	b c	a a
Rolled sections		1,2	$t_{\mathbf{f}}\!\leq 100\;mm$	y – y z – z	ъс	a a
	ż b	> q/q	$t_{\rm f}$ > 100 mm	y – y z – z	d d	c c

$$\phi = 0.5 \left[1 + \alpha \left(\overline{\lambda} - 0.2 \right) + \overline{\lambda}^2 \right]$$

$$\phi = 0.5 \left[1 + \alpha \left(\overline{\lambda} - 0.2 \right) + \overline{\lambda}^2 \right]$$

$$\chi = \frac{1}{\Phi + \left(\Phi^2 - \overline{\lambda}^2 \right)^{0.5}}$$


EXAMPLE 3

Step 3: calculation of the χ_{LT} using the alternative method applicable to rolled or equivalent welded sections (clause 6.3.2.3 of EC3-1-1)

The length between braced sections is $L = 4.335 \, m$. The critical moment M_{cr} assuming a linear diagram, in this example obtained just by **LTBeam software**, is given by:

$$M_{cr} = 5045.1 \text{ kNm} \implies \overline{\lambda}_{LT} = \left[2149 \times 10^{-6} \times 355 \times 10^{3} / 5045.1\right]^{0.5} = 0.39$$

Rolled I or H sections with $h/b = 320/300 = 1.07 < 2 \Rightarrow$

curve b, and $\alpha_{LT} = 0.34$

Taking
$$\overline{\lambda}_{LT,0} = 0.4$$
 and $\beta = 0.75$

$$\Phi_{LT} = 0.5 \times \left[1 + 0.34 \times (0.39 - 0.4) + 0.75 \times 0.39^{2} \right]$$

= 0.56

$$\chi_{LT} = \frac{1}{0.56 + \left(0.56^2 - 0.75 \times 0.39^2\right)^{0.5}} = 0.99$$

Table 6.4 - Buckling curves for lateral-torsional buckling (Alternative method)

Section	Limits	Buckling curve (EC3-1-1)
I or H sections	$h/b \le 2$	b
rolled	h/b > 2	С
I or H sections	$h/b \le 2$	С
welded	h/b > 2	d

EXAMPLE 3

Step 3: calculation of the χ_{LT} using the alternative method applicable to rolled or equivalent welded sections (clause 6.3.2.3 of EC3-1-1)

The correction factor $k_{c'}$ according to Table 6.6 of EC3-1-1, with $\Psi = 10.6/(-24.8) = -0.43$, is given by:

$$k_c = \frac{1}{1.33 - 0.33 \,\Psi} = \frac{1}{1.33 - 0.33 \times (-0.43)} = 0.68$$

$$f = 1 - 0.5 \times (1 - k_c) \times \left[1 - 2.0 \times (\overline{\lambda}_{LT} - 0.8)^2 \right]$$
$$= 1 - 0.5 \times (1 - 0.68) \times \left[1 - 2.0 \times (0.39 - 0.8)^2 \right] = 0.89$$

The modified lateral-torsional buckling reduction factor is given by:

$$\chi_{LT,mod} = 0.99/0.89 = 1.11 > 1.00$$

So,
$$\chi_{LT,mod} = 1.00$$
 must be adopted.

Diagram of bending moments		k_c		
Ψ = +1		1.0		
	-1≤Ψ≤1	$\frac{1}{1.33-0.33\Psi}$		
	M M_o ΨM			
		0.94		
		0.90		
		0.91		
	M M_0 ΨM			
		0.86		
		0.77		
		0.82		
Ψ - ratio between end moments, with -1 \leq Ψ \leq 1.				

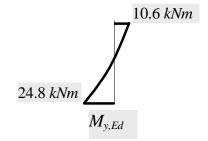
EXAMPLE 3

Step 4: interaction factors k_{yy} and k_{zy} .

The equivalent factors of uniform moment C_{my} and C_{mLT} are obtained based on the bending moment diagram, between braced sections according to the z direction in case of C_{my} and laterally in case of C_{mLT} . Assuming the member braced in z direction and laterally just at the base and top cross sections, the factors C_{my} and C_{mLT} must be calculated based on the bending moment diagram along the total length of the member.

Since the bending moment diagram is assumed linear, defined by:

$$M_{y,Ed,base}$$
 = -24.8 kNm;
 $M_{y,Ed,top}$ = 10.4 kNm, from Table B.3 of EC3-1-1, is obtained:


Table B.3: Equivalent uniform moment factors C_m in Tables B.1 and B.2

Moment diagram	range	C_{mv} and C_{mz} and C_{mLT}		
Women diagram		uniform loading	concentrated load	
М ψΜ	$-1 \le \psi \le 1$	0,6+0,	$4\psi \ge 0.4$	

$$\Psi = M_{y,Ed,top}/M_{y,Ed,base} = (10.6)/(-24.8) = -0.43 \implies$$

$$C_{my} = C_{mLT} = 0.60 + 0.4 \times (-0.43) = 0.43$$
 (> 0.40)

Joint Research Centre

EXAMPLE 3

Because the member is susceptible to torsional deformations, the interaction factors $k_{\nu\nu}$ and $k_{z\nu}$ are obtained from Table B.2 of EC3-1-1, through the following calculations:

$$k_{yy} = C_{my} \left[1 + \left(\overline{\lambda}_y - 0.2 \right) \frac{N_{Ed}}{\chi_y N_{Rk} / \gamma_{M1}} \right] = 0.43 \times \left[1 + \left(0.41 - 0.2 \right) \times \frac{1704}{0.92 \times 5726.2 / 1.0} \right] = 0.46;$$

As
$$k_{yy} \le C_{my} \left(1 + 0.8 \frac{N_{Ed}}{\chi_V N_{Rk} / \gamma_{M1}} \right) = 0.54$$
, then $k_{yy} = 0.46$

$$k_{zy} = \left[1 - \frac{0.1\overline{\lambda}_z}{(C_{mLT} - 0.25)} \frac{N_{Ed}}{\chi_z N_{Rk}/\gamma_{M1}}\right] =$$

$$= \left[1 - \frac{0.1 \times 0.75}{(0.43 - 0.25)} \frac{1704}{0.69 \times 5726.2/1.0}\right] = 0.82$$

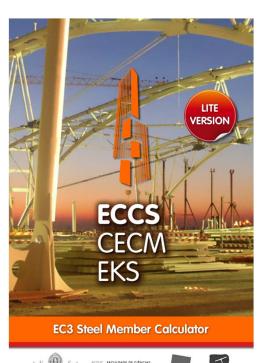
$$\frac{1704}{0.02 \times 5724.2/1.0} + 0.46 \times \frac{1}{1.00}$$

As
$$k_{zy} \ge \left[1 - \frac{0.1}{(C_{mLT} - 0.25)} \frac{N_{Ed}}{\chi_z N_{Rk}/\gamma_{M1}}\right] = 0.76$$

then
$$k_{zy} = 0.82$$

Step 5: Finally, the verification of equations 6.61

$$= \left[1 - \frac{0.1 \times 0.75}{(0.43 - 0.25)} \frac{1704}{0.69 \times 5726.2/1.0}\right] = 0.82$$


$$\frac{1704}{0.92 \times 5726.2/1.0} + 0.46 \times \frac{24.8}{1.00 \times 762.9/1.0} = 0.34 < 1.0$$

As
$$k_{zy} \ge \left[1 - \frac{0.1}{(C_{mLT} - 0.25)} \frac{N_{Ed}}{\chi_z N_{Rk}/\gamma_{M1}}\right] = 0.76$$

$$\frac{1704}{0.69 \times 5726.2/1.0} + 0.82 \times \frac{24.8}{1.00 \times 762.1/1.0} = 0.46 < 1.0$$

☐ Free software for design of steel members in accordance with EC3-1-1.

Design of cellular beams

http://www.constructalia.com

http://www.steelconstruct.com

Thank you for your attention

rads@dec.uc.pt

