Eurocode 3: Design of Steel Structures “ready for practice”

EUROCODES Background and Applications, Brussels, 19th February 2008

Prof. Ir. Frans Bijlaard

February 22, 2008
Contents of Presentation

- History and Context of Eurocode 3
- Structure of Eurocode 3
- Safety Level
- Introduction of Eurocode 3 in the Design Practice
- Conclusions
History and Context of Eurocode 3
Design of Steel Structures
History and Context of Eurocode 3
Design of Steel Structures

- Design in one country followed by erection in another country
- Standard building rules for whole Euro-market
- Easier to work in other countries
- More efficient transfer of research results in rules
- Harmonized core material for local handbooks, design aids and educational material
History and Context of Eurocode 3
Design of Steel Structures

“CHALLENGE FOR EUROCODES”

- Ensure structurally safe and serviceable structures
- Provide rules which are sufficiently detailed to avoid disputes
- Facilitate international competition on an even playing field
- Permit innovation in accordance with essential principles
CEN
TC250

EUROCODES
EC 0 : Basis of design

Hor. group 1: Terminology
Hor. group 2: Bridges
Hor. group 3: Fire

SC1
EC1 : Actions

SC2
SC3
SC4
SC5
SC6
SC7
SC8
SC9
EC2: Concrete
EC3: Steel
EC4: Composite
EC5: Timber
EC6: Mason
EC7: Geo
EC8: Earthq
EC9: Alu
Structure of Eurocode 3
General Parts

• EN 1993-1-1: General rules and rules for buildings

Rules for strength and stability

Rules specific for Buildings
Structure of Eurocode 3
General Parts

- EN 1993-1-2: Structural fire design

![Diagram of natural fire stages and standard fire test curve]

- Stages of a natural fire:
 - Ignition - Smouldering
 - Heating
 - Pre-Flashover
 - Flashover
 - Post-Flashover
 - Natural fire curve
 - ISO 834 standard fire curve

- Heating: 1000-1200°C
Structure of Eurocode 3
General Parts

- prEN 1993-1-3: Supplementary rules for cold formed members and sheeting
Structure of Eurocode 3
General Parts

- prEN 1993-1-4: Supplementary rules for stainless steels
- prEN 1993-1-5: Plated structural elements (in-plane loaded)
Structure of Eurocode 3
General Parts

- prEN 1993-1-6: Strength and stability of shells
- prEN 1993-1-7: Plated structural elements (transversely loaded)
- EN 1993-1-8: Design of joints

Diagram showing the zones: Tension zone, Shear zone, Compression zone.
Structure of Eurocode 3
General Parts

- EN 1993-1-9: Fatigue
- EN 1993-1-10: Material toughness and through-thickness properties
- prEN 1993-1-11: Design of structures with tension elements
- prEN 1993-1-12: Additional rules for the extension of EN 1993 up to steel grades S700
Structure of Eurocode 3
Application Parts

- prEN 1993-2: Steel bridges
Structure of Eurocode 3
Application Parts

- prEN 1993-3-1: Towers and Masts
Structure of Eurocode 3
Application Parts

- prEN 1993-3-2: Chimneys
- prEN 1993-4-1: Silos
- prEN 1993-4-2: Tanks
- prEN 1993-4-3: Pipelines
Structure of Eurocode 3
Application Parts

- prEN 1993-5: Piling
- prEN 1993-6: Crane supporting structures
Determination of characteristic values R_K
In Eurocode 3 and 4

1. Safety Basis

![Failure modes diagram]

<table>
<thead>
<tr>
<th>Mode 0</th>
<th>Mode 1</th>
<th>Mode 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brittle failure avoided by choice of material part 1-10</td>
<td>Ductile failure yielding</td>
<td>Fracture failure after yielding</td>
</tr>
<tr>
<td>Excessive deformation by yielding before failure</td>
<td>Stability failure induced by imperfections and yielding</td>
<td></td>
</tr>
</tbody>
</table>

2. Reliability assumptions

$$R_a = m_a \cdot \exp(-\alpha \beta \sigma_k - 0.5 \sigma_k^2)$$
with $\alpha \beta = 3.04$ e.g. from $\alpha = 0.8$ and $\beta = 3.8$

3. Use of annex D to EN 1990 to determine R_a

<table>
<thead>
<tr>
<th>1st Step:</th>
<th>Test-Eval.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_a = m_a \cdot \exp(-3.040 \sigma_k - 0.5 \sigma_k^2)$</td>
<td>$R_0 = m_a \cdot \exp(-1.645 \sigma_k - 0.5 \sigma_k^2)$</td>
</tr>
<tr>
<td>$\gamma_M = R_0 / R_a$</td>
<td></td>
</tr>
</tbody>
</table>

2nd Step: Classification of all γ_M values to

- $\gamma_M = 1.0$ for failure mode 0
- $\gamma_M = 1.1$ for failure mode 1
- $\gamma_M = 1.25$ for failure mode 2

3rd Step: Determination of classified R_K values

- $R_K = R_0 \cdot \gamma_M$ for failure mode 0
- $R_K = R_1 \cdot \gamma_M$ for failure mode 1
- $R_K = R_2 \cdot \gamma_M$ for failure mode 2

4th Step: $R_a = R_K / \gamma_M$
where γ_M value = National decision
Safety Level

- In applying the rules in Eurocode 3 a structural safety is reached of not less than the reliability index \(\beta = 3.8 \)

- Member states are entitled to choose their own safety level for structures
Safety Level

• The rules are set up such that they contain safety elements of which the value can be chosen by the individual member state.
• These safety elements are for instance the partial (safety) factors for the resistance (limit states) of structural elements.
• For these safety elements in the Eurocodes so-called recommended values are given in notes accompanying the clauses containing these safety elements.
Safety Level

- To promote harmonization of design rules throughout Europe the Commission strongly advises to choose the **recommended values** for these safety elements.
Introduction of Eurocode 3 in the Design Practice

- Criticism: Eurocode 3 is very advanced but it is complex to use

- To help the designer in practice there is a need for:
 - Background information
 - Introduction courses with worked examples
 - User-friendly software (“expert-systems”)
Introduction of Eurocode 3 in the Design Practice

• Criticism: Eurocode 3 is very advanced but it is complex to use

• Not “simple rules sell steel” but “Simple TOOLS sell Steel”
Conclusions

- The process of harmonization of design standards of the member countries of CEN did take a period of about three decades. Compared to the “life time” of an existing code in a country of about 15 years, for the Eurocodes this period is not so bad.

- Eurocode 3 “Design of Steel Structures” comprises a fairly complete set of design codes for uniquely designed structures and for a wide range of structural steel products.
Conclusions

• The introduction of the Eurocodes in the design practice needs great care. Design examples, guidelines, design tools (special software) should be developed in the various countries. Explanations of differences and the justification for these changes should be supplied to support the acceptation of the Eurocodes.

• To support these local activities in the various member states, background documents need to be drafted on which local design tools and examples need to be based.
THANK YOU FOR YOUR ATTENTION