EN 1991 – Eurocode 1: Actions on structures
Part 1-6 General actions
Actions during execution

Paolo Formichi
Department of Structural Engineering
University of Pisa - Italy
EN 1991-1-6: Contents

Foreword

Section 1 General
1.1 Scope
1.2 Normative references
1.3 Assumptions
1.4 Distinction between principles and application rules
1.5 Terms and definitions
1.6 Symbols

Section 2 Classification of Actions

Section 3 Design situations and limit states
3.1 General - identification of design situations
3.2 Ultimate limit states
3.3 Serviceability limit states
Section 4 Representation of actions

4.1 General
4.2 Actions on structural and non structural members during handling
4.3 Geotechnical Actions
4.4 Actions due to prestresssing
4.5 Predeformations
4.6 Temperature, shrinkage, hydration effects
4.7 Wind Actions
4.8 Snow Loads
4.9 Actions caused by water
4.10 Actions due to atmospheric icing
4.11 Construction loads
4.12 Accidental Actions
4.13 Seismic Actions
EN 1991-1-6: Annexes

Annex A1 (Normative)
Supplementary rules for buildings

Annexe A2 (Normative)
Supplementary rules for bridges

Annexe B (Informative)
Actions on structures during alteration, reconstruction or demolition
EN 1991-1-6 gives principles and general rules for the determination of actions to be taken into account during the execution of buildings and civil engineering works.

It may also be used as guidance for the determination of actions to be taken into account during:
- structural alterations
- reconstruction
- partial or full demolition.

It also gives rules for the determination of actions to be used for the design of auxiliary construction works (falsework, scaffolding, propping systems, cofferdam, bracing…), needed for the execution phases.
During execution the following design situations will be taken into account as appropriate:

- Transient
- Accidental
- Seismic

Any selected design situation will be in accordance with the execution process anticipated in the design, and with any revision occurred.
Any selected **transient** design situation be associated with a nominal duration equal to, or greater than the anticipated duration of the stage of execution under consideration.

The design situations should take into account the likelihood for any corresponding return periods of variable actions (e.g. climatic actions).

The return periods for the assessment of characteristic values of variable actions during execution may be defined in the **National Annex** or for the individual project.

Recommended return periods of climatic actions are given, depending on the nominal duration of the relevant design situation.
A minimum wind velocity during execution may be defined in the National Annex or for the individual project. The recommended basic value for durations of up to 3 months is 20m/s in accordance with EN 1991-1-4: Wind Actions.

Relationships between characteristic values and return period for climatic actions are given in the appropriate Parts of EN 1991.
Example: Snow loads according to return period
[Annex D of EN 1991-1-3]

If the available data show that the annual maximum snow load can be assumed to follow a Gumbel probability distribution, then the relationship between the characteristic value of the snow load on the ground and the snow load on the ground for a mean recurrence interval of n years is given by:

\[s_n = s_k \left\{ 1 - V \frac{\sqrt{6}}{\pi} \left[\ln(-\ln(1 - P_n)) + 0,57722 \right] \right\} \left(1 + 2,5923V \right) \]

- \(s_k \) is the characteristic snow load on the ground (with a return period of 50 years)
- \(P_n \) is the annual probability of exceedence (approx. = 1/n)
- \(V \) is the coefficient of variation of annual max. snow loads
Snow loads according to return period
[EN 1991-1-3]
Ultimate limit states need to be verified for all selected transient, accidental and seismic design situations as appropriate during execution in accordance with EN 1990.

The combinations of actions for accidental design situations can either include the accidental action explicitly or refer to a situation after an accidental event.

Generally, accidental design situations refer to exceptional conditions applicable to the structure or its exposure, such as:
- impact, local failure and subsequent progressive collapse,
- fall of structural or non-structural parts, and,
- in the case of buildings, abnormal concentrations of building equipment and/or building materials, water accumulation on steel roofs, fire, etc.
The verifications of the structure should take into account the appropriate geometry and resistance of the partially completed structure corresponding to the selected design situations.

Geometry of the partially completed resisting structure

Resistance of the lower floor, which has not necessarily attained its full strength.

Paolo Formichi, University of Pisa Italy
EN 1991-1-6: Ultimate Limit States

Brussels, 18-20 February 2008 – Dissemination of information workshop

Paolo Formichi, University of Pisa Italy

1973 - Bailey’s Crossroad – Fairfax (US)
Construction of a 26-story building.
Concrete was being placed at the 24th floor and shoring was simultaneously being removed at the 22nd floor cast two weeks before.
Insufficient shear resistance of concrete slabs caused progressive collapse (*)

1987 – Bridgeport Connecticut (US)
Inadequate temporary connections + instability of steel members (*)

geometry

resistance
Ultimate limit states of STR/GEO - Fundamental combination for **transient** design situations.

Expression (6.10) EN 1990

\[
\sum_{j \geq 1} \gamma_{G,j} G_{k,j} + \gamma_{P} P + \gamma_{Q,1} Q_{k,1} + \sum_{i > 1} \gamma_{Q,i} \psi_{0,i} Q_{k,i}
\]

Expressions (6.10a) and (6.10b) EN 1990

\[
\begin{aligned}
&\sum_{j \geq 1} \gamma_{G,j} G_{k,j} + \gamma_{P} P + \sum_{i \geq 1} \gamma_{Q,i} \psi_{0,i} Q_{k,i} \\
&\sum_{j \geq 1} \xi_{j} \gamma_{G,j} G_{k,j} + \gamma_{P} P + \gamma_{Q,1} Q_{k,1} + \sum_{i > 1} \gamma_{Q,i} \psi_{0,i} Q_{k,i}
\end{aligned}
\]

\[
0.85 \leq \xi \leq 1.00
\]
Accidental design situation

Expression (6.11b) EN 1990

\[\sum_{j \geq 1} G_{k,j} P + A_d (\psi_{1,1} \text{ or } \psi_{2,1}) Q_{k,1} + \sum_{i > 1} \psi_{2,i} Q_{k,i} \]

Seismic design situation

Expression (6.12b) EN 1990

\[\sum_{j \geq 1} G_{k,j} P + A_{Ed} + \sum_{i > 1} \psi_{2,i} Q_{k,i} \]
The **SLS** for the selected design situations during execution needs to be verified, as appropriate, in accordance with EN 1990.

The criteria associated with the **SLS** during execution should take into account the requirements for the *completed structure*.

Operations which can cause *excessive cracking* and/or *early deflection during execution* and which may adversely affect the durability, fitness for use and/or aesthetic appearance in the final stage has to be avoided.
The combinations of actions should be established in accordance with EN 1990. In general, the relevant combinations of actions for transient design situations during execution are:

- the **characteristic** combination
- the **quasi-permanent** combination
SLS: combinations of actions.

Characteristic combination (irreversible SLS)

\[
\sum_{j \geq 1} G_{k,j}''P'' + "0,1 Qi + "\psi_0,1 Q_{k,i} + "\psi_1,1 Q_{k,i}
\]

Quasi-permanent combination (reversible SLS)

\[
\sum_{j \geq 1} G_{k,j}''P'' + "\psi_1,1 Q_{k,i} + "\psi_2,1 Q_{k,i}
\]
Classification & representation of actions

Actions during execution are classified in accordance with EN 1990, and may include:

- those actions that are not construction loads; and
- construction loads

Both types of actions are classified (tables 2.1 and 2.2) depending on:

- Variation in time (permanent, variable, accidental)
- Origin (direct, indirect)
- Spatial variation (fixed, free)
- Nature (static, dynamic)
Classification & representation of actions

Table 2.1 Classification of actions (other than construction loads) during execution stages.

<table>
<thead>
<tr>
<th>Related clause in this standard</th>
<th>Action</th>
<th>Classification</th>
<th>Nature (static/dynamic)</th>
<th>Remarks</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2</td>
<td>Self weight</td>
<td>Permanent</td>
<td>Direct</td>
<td>Fixed with tolerance / free</td>
<td>Static</td>
</tr>
<tr>
<td>4.3</td>
<td>Soil movement</td>
<td>Permanent</td>
<td>Indirect</td>
<td>Free</td>
<td>Static</td>
</tr>
<tr>
<td>4.3</td>
<td>Earth pressure</td>
<td>Permanent / variable</td>
<td>Direct</td>
<td>Free</td>
<td>Static</td>
</tr>
<tr>
<td>4.4</td>
<td>Prestressing</td>
<td>Permanent / variable</td>
<td>Direct</td>
<td>Fixed</td>
<td>Static</td>
</tr>
<tr>
<td>4.5</td>
<td>Pre-deformations</td>
<td>Permanent / variable</td>
<td>Indirect</td>
<td>Free</td>
<td>Static</td>
</tr>
<tr>
<td>4.6</td>
<td>Temperature</td>
<td>Variable</td>
<td>Indirect</td>
<td>Free</td>
<td>Static</td>
</tr>
<tr>
<td>4.6</td>
<td>Shrinkage/hydration effects</td>
<td>Permanent / variable</td>
<td>Indirect</td>
<td>Free</td>
<td>Static</td>
</tr>
<tr>
<td>4.7</td>
<td>Wind actions</td>
<td>Variable / accidental</td>
<td>Direct</td>
<td>Fixed/free</td>
<td>Static / dynamic</td>
</tr>
<tr>
<td>4.8</td>
<td>Snow loads</td>
<td>Variable/accidental</td>
<td>Direct</td>
<td>Fixed/free</td>
<td>Static / dynamic</td>
</tr>
<tr>
<td>4.9</td>
<td>Actions due to water</td>
<td>Permanent / variable/accidental</td>
<td>Direct</td>
<td>Fixed/free</td>
<td>Static / dynamic</td>
</tr>
<tr>
<td>4.10</td>
<td>Atmospheric ice loads</td>
<td>Variable</td>
<td>Direct</td>
<td>Free</td>
<td>Static / dynamic</td>
</tr>
</tbody>
</table>

(*) : The source documents need to be examined with the National Annexes in which additional relevant information may be provided.

Paolo Formichi, University of Pisa Italy
Construction loads Q_c may be represented in the appropriate design situations (see EN 1990), either, as one single variable action, or where appropriate different types of construction loads may be grouped and applied as a single variable action. Single and/or a grouping of construction loads should be considered to act simultaneously with non construction loads as appropriate.

\[
\begin{align*}
Q_{ca} \\
Q_{cb} \\
Q_{cc} \\
Q_{cd} \\
Q_{ce} \\
Q_{cf}
\end{align*}
\]

6 different sources
Construction loads Q_c are classified as variable actions

Table 2.2 Classification of construction loads.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_{ca}</td>
<td>Personnel and hand tools</td>
<td>Variable</td>
<td>Direct</td>
<td>Free</td>
<td>Static</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q_{cb}</td>
<td>Storage movable items</td>
<td>Variable</td>
<td>Direct</td>
<td>Free</td>
<td>Static / dynamic</td>
<td>Dynamic in case of dropped loads</td>
<td>EN 1991-1-1</td>
</tr>
<tr>
<td>Q_{cc}</td>
<td>Non-permanent equipment</td>
<td>Variable</td>
<td>Direct</td>
<td>Fixed / free</td>
<td>Static / dynamic</td>
<td></td>
<td>EN 1991-3</td>
</tr>
<tr>
<td>Q_{cd}</td>
<td>Movable heavy machinery and equipment</td>
<td>Variable</td>
<td>Direct</td>
<td>Free</td>
<td>Static / dynamic</td>
<td></td>
<td>EN 1991-2, EN 1991-3</td>
</tr>
<tr>
<td>Q_{ce}</td>
<td>Accumulation of waste materials</td>
<td>Variable</td>
<td>Direct</td>
<td>Free</td>
<td>Static / dynamic</td>
<td>Can impose loads on e.g. vertical surfaces also</td>
<td>EN 1991-1-1</td>
</tr>
<tr>
<td>Q_{cf}</td>
<td>Loads from parts of structure in temporary states</td>
<td>Variable</td>
<td>Direct</td>
<td>Free</td>
<td>Static</td>
<td>Dynamic effects are excluded</td>
<td>EN 1991-1-1</td>
</tr>
</tbody>
</table>

Where Construction Loads are classified as **fixed**, they should be defined tolerances for possible deviation from the theoretical position.

Where Construction Loads are classified as **free**, they should be defined limits of the area where they should be moved or positioned.

Paolo Formichi, University of Pisa Italy
Representation of Construction Loads

Construction loads Q_{ca} Personnel and hand tools

Working personnel, staff and visitors, possibly with hand tools or other small site equipment.

Modelled as a uniformly distributed load q_{ca} and applied as to obtain the most unfavourable effects.

The recommended value is: $q_{ca,k} = 1,0 \text{kN/m}^2$

Paolo Formichi, University of Pisa Italy
Construction loads Q_{ca} **Personnel and hand tools**

The recommended value has been derived from investigations on construction sites(*), with regard to the following stages of construction:

1. before pouring of concrete slab;
2. after pouring of concrete slab, during the preparation of the next floor.

<table>
<thead>
<tr>
<th>Measurement grid size [m²]</th>
<th>Mean Load [kN/m²]</th>
<th>10% fractile Load [kN/m²]</th>
<th>1% fractile Load [kN/m²]</th>
<th>0,5% fractile Load [kN/m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,32</td>
<td>0,31</td>
<td>1,08</td>
<td>2,93</td>
<td>3,34</td>
</tr>
<tr>
<td>5,95</td>
<td>0,30</td>
<td>0,92</td>
<td>2,00</td>
<td>2,39</td>
</tr>
<tr>
<td>9,25</td>
<td>0,29</td>
<td>0,80</td>
<td>2,18</td>
<td>2,68</td>
</tr>
<tr>
<td>20,90</td>
<td>0,30</td>
<td>0,73</td>
<td>1,58</td>
<td>1,94</td>
</tr>
<tr>
<td>37,16</td>
<td>0,28</td>
<td>0,72</td>
<td>1,43</td>
<td>1,46</td>
</tr>
</tbody>
</table>

As an example: the 5% fractile value for the 9,25 m², is 1,23 kN/m² (*Gumbel distribution of the random variable is assumed*).

Paolo Formichi, University of Pisa Italy
Construction loads Q_{cb} Storage of movable items e.g.:
1. Building and construction materials, precast elements;
2. Equipment.

Modelled as a free action and represented by a UDL q_{cb} and a concentrated load F_{cb}
For bridges, the following values are recommended minimum values:

$$q_{cb,k} = 0.2 \text{kN/m}^2$$
$$F_{cb,k} = 100 \text{kN}$$
Representation of Construction Loads

Construction loads Q_{cc} Non-permanent equipment in position for use:

- Static (e.g. formwork panels, scaffolding, falsework, machinery, containers)
- During movement (e.g. travelling forms launching griders and nose, counterweights)

Unless more accurate information is available, they may be modelled by a uniformly distributed load with a recommended minimum characteristic value of $q_{cc,k} = 0.5 \text{ kN/m}^2$

Paolo Formichi, University of Pisa Italy
Construction loads Q_{cd} Movable heavy machinery and equipment usually wheeled or tracked e.g.:
Cranes, lifts, vehicles, lift trucks, power installations, jacks, heavy lifting devices.

When not defined in the project specification, information for the determination of actions may be found in:
- EN 1991-2 for actions due to vehicles
- EN 1991-3 for actions due to cranes.

Paolo Formichi, University of Pisa, Italy
Construction loads Q_{ce} Accumulation of waste materials e.g.:
surplus construction materials excavated soil or demolition materials.

These loads are taken into account by considering possible mass effects on
horizontal, inclined and vertical elements (such as walls).
These loads may vary significantly, and over short time periods, depending on
types of materials, climatic conditions, build-up and clearance rates.
Construction loads Q_{cf} Loads from part of structure in a temporary state before the final design actions take effect e.g. loads from lifting operations.

Taken into account and modelled according to the planned execution sequences, including the consequences of those sequences (e.g. loads and reverse load effects due to particular processes of construction, such as assemblage).
Representation of Construction Loads

Construction loads during the casting of concrete (4.11.2)

Actions to be taken into account simultaneously during the casting of concrete may include:

- working personnel with small site equipment (Q_{ca});
- formwork and load-bearing members (Q_{cc});
- the weight of fresh concrete (which is one example of Q_{cf}), as appropriate.
\(Q_{ca}, Q_{cc} \) and \(Q_{cf} \) may be given in the National Annex.

Recommended values for fresh concrete (\(Q_{cf} \)) may be taken from Table 4.2 and EN 1991-1-1, Table A.1. Other values may have to be defined, for example, when using self-levelling concrete or pre-cast products.

<table>
<thead>
<tr>
<th>Action</th>
<th>Loaded area</th>
<th>Load in kN/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Outside the working area</td>
<td>0.75 covering (Q_{ca})</td>
</tr>
<tr>
<td>(2)</td>
<td>Inside the working area 3 m x 3 m (or the span length if less)</td>
<td>10 % of the self-weight of the concrete but not less than 0.75 and not more than 1.5 Includes (Q_{ca}) and (Q_{cf})</td>
</tr>
<tr>
<td>(3)</td>
<td>Actual area</td>
<td>Self-weight of the formwork, load-bearing element ((Q_{cc})) and the weight of the fresh concrete for the design thickness ((Q_{ct}))</td>
</tr>
</tbody>
</table>

Paolo Formichi, University of Pisa Italy
Accidental actions such as impact from construction vehicles, cranes, building equipment or materials in transit (e.g. skip of fresh concrete), and/or local failure of final or temporary supports, including dynamic effects, that may result in collapse of load-bearing structural members, shall be taken into account, where relevant.

Abnormal concentrations of building equipment and/or building materials on load-bearing structural members should also be taken into account.

Dynamic effects may be defined in the National Annex or for the individual project. The recommended value of the dynamic amplification factor is 2. In specific cases a dynamic analysis is needed.
Seismic actions should be determined according to EN 1998, taking into account the reference period of the considered transient situation.

The design values of ground acceleration and the importance factor γ may be defined in the National Annex or for the individual project.
Supplementary rules for buildings

Representative values of the variable action due to construction loads may be set by the National Annex, within a recommended range of $\psi_0 = 0.6$ to 1.0.

The recommended value of ψ_0 is 1.0.

The minimum recommended value of ψ_2 is 0.2 and it is further recommended that values below 0.2 are not selected.

For the verification of serviceability limit states, the combinations of actions to be taken into account should be the characteristic and the quasi-permanent combinations.
Supplementary rules for bridges

For the incremental launching of bridges the design values for vertical deflections may be found in the National Annex.

The recommended values are:

a) ± 10 mm longitudinally for one bearing, the other bearings being assumed to be at the theoretical level;

b) $\pm 2,5$ mm in the transverse direction for one bearing, the other bearings being assumed to be at the theoretical level.
Supplementary rules for bridges – Construction Loads

For the incremental launching of bridges horizontal forces due to friction effects should be determined, and applied between the bridge structure, the bearings and the supporting structures, with dynamic action effects taken into account where appropriate.

It is recommended that the design value of the total horizontal friction forces should be not less than 10% of the vertical loads, and should be determined to give the least favourable effects.

The horizontal friction forces at every pier should be determined with the appropriate friction coefficients, μ_{min} and μ_{max} (defined in the National Annex).

Unless more accurate values are available from tests for movements on very low friction surfaces (e.g. PTFE) the recommended values are:

- $\mu_{\text{min}} = 0$
- $\mu_{\text{max}} = 0.04$
Actions on structures during alteration, reconstruction or demolition

The actual performance of structures affected by deterioration should be taken into account in the verification of the stages for reconstruction or demolition. The investigation of structural conditions to enable the identification of the load-bearing capacity of the structure and to prevent unpredictable behaviour during reconstruction or demolition should be undertaken.

The reliability for the remaining structure or parts of the structure under reconstruction, partial or full demolition should be consistent with that considered in the Eurocodes for completed structures or parts of structures.
Thank you for your attention