International and Russian experience in implementation of the vulnerability analysis and risk assessment for enhanced safety of building structures

Igor A. Kirillov
Russian Research Centre “Kurchatov Institute”

October 10, 2008
Outline:

• Why Eurocodes “encourage innovation and good design”?

• How risk analysis can contribute to building safety enhancement?

• What else can be done for the Eurocodes refinement?
The Eurocodes system is an important milestone on a long way from “prescriptive” to “performance-based” and “risk-informed” approach for building design and technical regulation.
Instead of

- unnecessary *overdesign*
- *too conservative* requirements
- high cost

of the “prescriptive” approach,

the “*performance-based*” approach encourage and foster

- use of *novel* materials
- treat the *realistic, relevant* design situations
- *competitive* cost

on the base of preliminary risk analysis and assessment
The Eurocodes can be called as the “risk-informed” codes.

Technical decisions are making, taking into account an information on the risks, associated both with

- the hazards/threats to building through its life-cycle and
- the construction projects implementation
Two factor model of risk analysis (consequence-oriented)

\[\text{Risk} = \text{Probability} \times \text{Consequences} \]

International experience (fire safety, seismic design):
- Eurocodes
- ISO/IEC
- NFPA, NIST
- Japan, Canada

Russian experience:
- Technical regulation “on fire safety” (July 2008)

How to find “weak points” in specific design of building?
Three factor model of risk analysis (safety-oriented)

\[\text{Risk} = \text{Threat} \times \text{Vulnerability} \times \text{Criticality} \]

International experience (fire safety, seismic design):
- BSI – software safety / security
- HAAPC – food safety
- FEMA 452

Russian experience:
- Guidelines on risk-based vulnerability analysis of the high-rise and unique buildings (December 2007)

Why it is important for the innovative building codes?
Russian experience: Guidelines on risk-based vulnerability analysis of the high-rise and unique buildings (December 2007)

• List of critically important points
• List of the design basis scenarios
• List of the protective measures (prevention/delay/mitigation) for the multi-hazard conditions
Emerging topical issues:

- Building Protection under Multi-hazard Conditions
- Building Resilience

What about completeness of ontology of the Eurocodes?

How safe is a robust building?
Multi-hazard situations - Case 1: 9/11

Combined Hazardous Effects: Impact – Explosion - Fire

CHEIEF

10^0 sec

10^1 sec

10^3 sec
Multi-hazard situations - Case 1: 9/11

Combined Hazardous Effects: Impact – Explosion - Fire

CHEIEF

Tower was robust enough to withstand mechanical impact. Does it enough for safety?
Multi-hazard situations - Case 1: 9/11

Combined Hazardous Effects: Impact – Explosion - Fire

CHEIEF Tower was robust enough to withstand explosion. Does it enough for safety?
Multi-hazard situations - Case 1: 9/11

Combined Hazardous Effects: Impact – Explosion - Fire

Collapse is a result of unsufficient resilience of building.
Multi-hazard situations –
Case 2: San Francisco-Oakland Bay Bridge collapse 05/07
Combined Hazardous Effects: Impact – Fire

How to measure and enhance a building/structure resilience against multi-hazard?
What else?

What can we do jointly:

Knowledge generation
1. extend *ontology* of the Eurocodes – safety, durability, serviceability, robustness, resilience
2. propose *metrics* for characterization of the robustness and resilience

Pre-normative studies and support actions
1. *Guidelines* on risk-based robustness and resilience differentiation
 (TC250 & TC164 ?)
2. EU-Russia *Glossary* on multi-hazard risk management of the building/structures
Link:

“Resilience of Cities to Terrorist and other Threats: Learning from 9/11 and further Research Issues”

http://www.springer.com/978-1-4020-8487-4
Thanks for attention and resilience 😊.

E-mail: kia@hepti.kiae.ru, kirillov.igor@gmail.com