Revised probabilistic hazard map of Turkey and its implications on seismic design

Sinan Akkar
Boğaziçi University
Kandilli Observatory and Earthquake Research Institute
İstanbul, Turkey
Outline

• Revision of Turkish Seismic Hazard Map Project (T-SHM): Brief overview
 • Motivation
 • Major studies
 • Main deliverables

• Implications on design codes
 • Turkish design spectrum
 • Long-period spectral corner period (T_L)
 • Damping scaling factors
 • Vertical design spectrum
Acknowledgements

• *Disaster and Emergency Management Authority (AFAD) and Turkish Catastrophe Insurance Pool (TCIP)*

• *Project group*

• *Dr. Özkan Kale*
ELABORATION OF MAPS FOR CLIMATIC AND SEISMIC ACTIONS FOR STRUCTURAL DESIGN IN THE BALKAN REGION
27-28 October 2015, Zagreb
Revision of Turkish seismic hazard map project

A multi-institutional project funded by the Disaster and Emergency Management Authority (AFAD) and Turkish Catastrophe Insurance Pool (TCIP)
• Revise seismic hazard maps at the national level based on the recent state-of-the-art developments and findings in this field (Turkey and worldwide)

• Provide spectral ordinates (PGA, SA at T = 0.2s and 1.0s) for return periods of 43 years (69%/50 years), 72 years (50%/50 years), 475 years (10%/50 years) and 2475 years (2%/50 years) for their use in the definition of updated code spectra and insurance premiums
Earthquake Catalog

• Compilation of instrumental catalog (12674 earthquakes) is based on national / international catalogs

• Historical catalog (512 earthquakes) is compiled from the recently finished GEM-Historical Catalog, SHARE and EMME projects

• Minimum magnitude bound is 4

• Homogenized magnitudes (M_w) through empirical conversion equations developed from the compiled catalog

• Declustering and completeness analyses
Seismic Sources

Active faults in mainland Turkey

553 fault segments

Area sources in and around mainland Turkey

Active faults around mainland Turkey

200 km buffer zone

Literature review, already finished national and international projects, earthquake catalogs, GIS maps to determine active fault segments, area sources, maximum magnitudes, slip rates, geometries, style-of-faulting, depth distribution etc.
SOURCE CHARACTERIZATION

AREA SOURCE (AS)

FAULT + BACKGROUND (FS)

ELABORATION OF \textbf{MAPS FOR CLIMATIC AND SEISMIC ACTIONS FOR STRUCTURAL DESIGN IN THE BALKAN REGION}

27-28 October 2015, Zagreb
GROUND-MOTION CHARACTERIZATION

SHALLOW ACTIVE CRUSTAL SEISMICITY

INTERFACE AND INSLAB SEISMICITY

Akkar et al. (2014) – 0.3
Akkar and Çağnan (2014) – 0.3
Chiou and Youngs (2008) – 0.3
Zhao et al. (2006) – 0.1

Zhao et al. (2006) – 0.4
Lin and Lee (2008) – 0.2
Atkinson and Boore (2003) – 0.2
Youngs et al. (2006) – 0.2
• Compute hazard for each seismic source model considering the GMPEs and seismic source logic-trees.
• Combine the results with alternative source model weights

SA at 1.0s – 475 yrs (10% in 50 yrs)
Implications to seismic design
In Turkish code:
Design: 10% probability of exceedance in 50 years ($T_R = 475$ yrs)

Immediate Occupancy, Life Safety and Collapse Prevention performances: 50% to 2% probability of exceedance in 50 years

Current code: Zonation map represents $T_R = 475$ years. Increase it by 50% for $T_R = 2475$ years and reduce it by 50% for $T_R = 72$ years (50%/50)

Revised code: Separate maps of SA at $T = 0.2s$ and $T = 1.0s$ for each T_R
(New code & New map / Current code & Current map)

$S_a (T=2.0s) - Z3$ (generic soft soil – $V_{S30} = 250$ m/s)
Spectral ratio between 2475-year and 475-year spectral ordinates varies between 1.6 and 3.5. It increases towards seismically less active regions.
Long-period spectral corner period

\[T_L = 3s \]

\[T_L = 4s \]

\[T_L = 5s \]

6.7 < M < 7.1

7.1 < M < 7.5

Important remark: Large magnitude events are richer in long-period ground-motion components. Thus, \(T_L \) is sensitive to magnitude:

\[T_L \propto \text{Magnitude} \]
Comparisons between various codes (T_L)

Site: 38.45N-30.45E
$M_{\text{mean}} = 6.54$
$\overline{T_L} = 3s$

Graphs showing comparisons of Sa (g) and Sd (cm) for different periods with original, EC8, NEHRP-2009, and this study data.
Damping Scaling Factor (DSF)

$$DSF = \frac{SA(\xi \neq 5\%)}{SA(\xi = 5\%)}$$

Currently expressed as predictive models in terms of magnitude, source-to-site distance, site conditions, faulting style etc.)

$$\ln(DSF) = f(M, R, V_{S30}, Sof) + \varepsilon\sigma$$

Requires simplifications for their effective use in the codes.
No significant differences in DSF variation for different distances.

Magnitude dependency of DSFs can also be averaged out for their implementation to the codes.

\[
\begin{align*}
0.0s < T < 0.15s & \quad DSF = 1.0 + \frac{(DSF_{T=0.15s} - 1.0) \times T}{0.15} \\
0.15s \leq T \leq 0.5s & \quad DSF = \frac{a \times T}{(b + T)} \\
0.5s < T \leq 10s & \quad DSF = DSF_{T=0.5s} + \frac{(DSF_{T=10s} - DSF_{T=0.5s}) \times (T - 0.5)}{9.5}
\end{align*}
\]
Implementation of DSFs to design as well as UHS

- Proposed DSFs are applicable to both UHS and design spectrum
- Comparable differences in the short period range with respect to EC8. But consistent results with NEHRP
- EC8 yields smaller amplifications for lightly damped systems. This is not the case for the proposed DSF expression
Horizontal-to-vertical spectrum

Vertical spectrum should be consistent with the horizontal spectrum. Develop the vertical spectrum from the already defined horizontal spectrum.

Behavior of vertical spectrum is different than the horizontal spectrum:

- The vertical constant acceleration plateau is shorter than its horizontal counterpart.
- Short-period corner period as well as the decaying branch is sensitive to the variations in the short-period vertical spectral ordinates and long-period horizontal spectral ordinates.
\[SAv = C_v^{-1} SAh_{0.2} \]

\[SAv = C_v^{-1} 0.40SAh_{0.2} \]

\[SAv = C_v^1 SAh_{0.2} \left(\frac{TSv}{T} \right)^n \]
Case studies for vertical spectrum
Conclusions

- Earthquake zone approach will not be used any more in Turkish earthquake code after the implementation of probability-based hazard maps.

- The probabilistic hazard maps study provided a good opportunity to revisit damping scaling factor, vertical spectrum and long-period corner period definitions that might be of use in the design codes.
Thank you