Overview on EN 1993

Prof. Dr.-Ing. U. Kuhlmann
(Chairperson CEN/TC250/SC3)
Content

• Structure and overview on Eurocode 3
• Organization
• Revision and further developments of Eurocode 3
• Mandate M/515
• Examples of issues for further developments
• Final remarks
Structure and overview on Eurocode 3

General parts (12 parts)

Application parts (8 parts)

Application parts ➔ „Master“ for field of application
Structure and overview on Eurocode 3

Eurocode 3

EN 1993-1: General rules and rules for buildings
EN 1993-2: Steel Bridges
EN 1993-3: Towers, Masts and Chimneys
EN 1993-4: Silos, Tanks and Pipelines
EN 1993-5: Piling
EN 1993-6: Crane supporting structures

→ General Part

refer to

→ Application Parts
Structure and overview on Eurocode 3

EN 1993-1-1:	General rules and rules for buildings
EN 1993-1-2:	Structural fire design
EN 1993-1-3:	Supplementary rules for cold-formed members and sheeting
EN 1993-1-4:	Supplementary rules for stainless steels
EN 1993-1-5:	Plated structural elements
EN 1993-1-6:	Strength and stability of shell structures
EN 1993-1-7:	Plated structures subject to out of plane loading
EN 1993-1-8:	Design of joints
EN 1993-1-9:	Fatigue
EN 1993-1-10:	Additional rules for the extension of EN 1993 up to steel grades S700

EN 1993-1-1 and EN 1993-1-8 are of central importance
Organization

- At European level CEN/TC250/SC3 „Design of Steel Structures“ involving NSBs = National Standardization Bodies (e.g. BSI, DIN, AFNOR, NEN etc.)
Organization

CEN/TC 250
Structural Eurocodes

CEN/TC 250/SC 1
Actions on Structures
Working Group EN 1993-1-1
B. Snijder (NL)

CEN/TC 250/SC 2
Design of Concrete Structures
Working Group EN 1993-1-2
P. Schaumann (D)

CEN/TC 250/SC 3
Design of Steel Structures
Working Group EN 1993-1-5
U. Kuhlmann (D)

CEN/TC 250/SC 4
Design of Composite Structures
Working Group EN 1993-1-8
T. Ummenhofer (D)

Working Group EN 1993-1-10
B. Kühn (D)

→ Technical work by 19 CEN Working Groups*

* Formerly called Evolution Groups
Organization

Proposal for corrigenda or amendment coming from: industry, national bodies, experts, ...

Support by „Working Group” (Evolution Group)

CEN/TC250/SC3

Technical clarification of problem with solution and report

Resolution of amendments through CEN/TC250/SC3

Update of EN 1993 via CEN/TC250 and CEN

National Bodies
Organization

- CEN Evolution/Working Groups ↔ ECCS Technical Committees

Exchange of experts - Common meetings, use of ECCS-Internet-Platform, common dissemination, common research projects
Organization

Current list of Working Groups of SC3

<table>
<thead>
<tr>
<th>Working Group</th>
<th>Group</th>
<th>Title</th>
<th>Convenor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WG1</td>
<td>CEN/TC250/SC3</td>
<td>Evolution of EN 1993-1-1 – General rules for buildings</td>
<td>B. Snijder</td>
</tr>
<tr>
<td>WG2</td>
<td></td>
<td>Evolution of EN 1993-1-2 – Fire</td>
<td>P. Schaumann</td>
</tr>
<tr>
<td>WG3</td>
<td></td>
<td>Evolution of EN 1993-1-3 – Cold-formed members</td>
<td>L. Sokol</td>
</tr>
<tr>
<td>WG4</td>
<td></td>
<td>Evolution of EN 1993-1-4 – Stainless steel</td>
<td>N. Badoo</td>
</tr>
<tr>
<td>WG5</td>
<td></td>
<td>Evolution of EN 1993-1-5 – Plated structures</td>
<td>U. Kuhlmann</td>
</tr>
<tr>
<td>WG6</td>
<td></td>
<td>Evolution of EN 1993-1-6 – Shell Structures</td>
<td>M. Rotter</td>
</tr>
<tr>
<td>WG7</td>
<td></td>
<td>Evolution of EN 1993-1-7 – Plated structures subject to out of plane loading</td>
<td>M. Rotter</td>
</tr>
<tr>
<td>WG8</td>
<td></td>
<td>Evolution of EN 1993-1-8 – Joints and connections</td>
<td>T. Ummenhofer</td>
</tr>
<tr>
<td>WG9</td>
<td></td>
<td>Evolution of EN 1993-1-9 – Fatigue</td>
<td>M. Lukic</td>
</tr>
<tr>
<td>WG10</td>
<td></td>
<td>Evolution of EN 1993-1-10 – Material toughness and through-thickness properties</td>
<td>B. Kühn</td>
</tr>
<tr>
<td>WG11</td>
<td></td>
<td>Evolution of EN 1993-1-11 – Tension components</td>
<td>H. Friedrich</td>
</tr>
<tr>
<td>WG12</td>
<td></td>
<td>Evolution of EN 1993-1-12 – High strength steel</td>
<td>O. Lagerqvist</td>
</tr>
<tr>
<td>WG13</td>
<td></td>
<td>Evolution of EN 1993-2 – Bridges</td>
<td>L. Davaine</td>
</tr>
<tr>
<td>WG14</td>
<td></td>
<td>Evolution of EN 1993-3 – Towers, masts and chimneys</td>
<td>J. Rees</td>
</tr>
<tr>
<td>WG15</td>
<td></td>
<td>Evolution of EN 1993-4-1 – Silos</td>
<td>M. Rotter</td>
</tr>
<tr>
<td>WG16</td>
<td></td>
<td>Evolution of EN 1993-4-2 – Tanks</td>
<td>M. Rotter</td>
</tr>
<tr>
<td>WG17</td>
<td></td>
<td>Evolution of EN 1993-4-3 – Pipelines</td>
<td>M. Rotter</td>
</tr>
<tr>
<td>WG18</td>
<td></td>
<td>Evolution of EN 1993-5 – Piling</td>
<td>A. Schmitt</td>
</tr>
<tr>
<td>WG19</td>
<td></td>
<td>Evolution of EN 1993-6 – Crane supporting structures</td>
<td>U. Kuhlmann</td>
</tr>
</tbody>
</table>
Revision and further developments of Eurocode 3

- **EN-Versions**
 - Consolidated Versions 2010/12
 - EN-Versions plus National Annexes

- **1. Changes and corrections**
 - 2005
 - 2007
 - 2010
 - 2012
 - 2014
 - 2019

- **Revision phase**
 - Today

- **General revision and maintenance**
 - 5-year review according CEN
 - Call for „Systematic Review“

- **Further developments**
 - EU Mandate M/S15
 - 2014 – 2019/2020

- **1. New Versions Eurocodes 2019/2020**

- **E.g. Introduction Germany 2012/07/01**
Revision and further developments of Eurocode 3

General revision and maintenance “Systematic Review”

Technical enhancements in the frame of the EU Mandate M/515
Revision and further developments of Eurocode 3

To the Members of CEN/TC 250

Structural Eurocodes

Direct tel: +44 [0]208 996 7421
E-mail: tracey.wilkins@bsigroup.com
Web: www.bsigroup.com

Dear Member,

CEN/TC 250 SYSTEMATIC REVIEWS

In accordance with BT resolution C60/2008, the launch of systematic reviews for the 58 Eurocodes was delayed.

The systematic reviews are now being treated as a complementary activity to the execution of Mandate M/515 EN Structural Eurocodes, with the timing compatible with the phasing of the TC 250 work programme [CEN/TC 250 N 953]. It should be noted that the publication of the next generation of the EN Eurocodes is not planned to conclude before 2020.

The following reviews have been launched:

Members are invited to register their responses to the questions below via their National Standards Body’s nominated voter on the Committee Internal Ballot (CIB) no later than:

30 September 2014
Mandate M/515

- **Title**
 - Mandate for amending existing Eurocodes and extending the scope of structural Eurocodes

- **Duration**
 - 2014 – 2019/2020? (parallel to 1. review period of Eurcodes)

- **Key Issues**
 - Reduction of Nationally Determined Parameters (NPDs) of existing Eurocode parts
 - Enhancing ‘ease of use’ of existing Eurocodes by:
 i. improving the clarity
 ii. simplifying routes through the Eurocodes
 iii. limiting, where possible, the inclusion of alternative application rules; and
 iv. avoiding or removing rules of little practical use in design

- Creation of new Eurocodes, e.g. for “Glass” or “Existing Structures”
Mandate M/515

- **Title**
 - Mandate for amending existing Eurocodes and extending the scope of Structural Eurocodes

 - Start originally March 2014 (now spring 2015?), Duration of 5 years, equal to official CEN review period of Eurocodes

 - Total work program is split up into 4 overlapping phases

 → All coming amendments and corrigenda will be realized by the Mandate
Mandate M/515

SC3 Mandate Tasks

<table>
<thead>
<tr>
<th>Task-Ref.</th>
<th>Task-Phase</th>
<th>Corresponding Part of EN 1993</th>
<th>Task-Name</th>
<th>No. of Sub-tasks</th>
<th>No. of priority Sub-tasks</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC3.T1</td>
<td>1</td>
<td>EN 1993-1-1</td>
<td>Design of Sections and Members according to EN 1993-1-1</td>
<td>9</td>
<td>6</td>
<td>B. Snijder</td>
</tr>
<tr>
<td>SC3.T2</td>
<td>1</td>
<td>EN 1993-1-8</td>
<td>Joints and Connections according to EN 1993-1-8</td>
<td>11</td>
<td>7</td>
<td>T. Ummenhofer</td>
</tr>
<tr>
<td>SC3.T3</td>
<td>2</td>
<td>EN 1993-1-3</td>
<td>Cold-formed members and sheeting - Revised EN 1993-1-3</td>
<td>10</td>
<td>7</td>
<td>L. Sokol</td>
</tr>
<tr>
<td>SC3.T5</td>
<td>2</td>
<td>EN 1993-1-6, -1-7</td>
<td>Harmonisation and Extension of Rules for Shells and Similar Structures - Revised EN 1993-1-6 and EN 1993-1-7</td>
<td>7</td>
<td>5</td>
<td>M. Rotter</td>
</tr>
<tr>
<td>SC3.T6</td>
<td>2</td>
<td>EN 1993-1-2</td>
<td>Fire design of Steel Structures - Revised EN 1993-1-2</td>
<td>10</td>
<td>6</td>
<td>P. Schaumann</td>
</tr>
<tr>
<td>SC3.T7</td>
<td>3</td>
<td>EN 1993-1-4</td>
<td>Stainless Steels - Revised EN 1993-1-4</td>
<td>7</td>
<td>5</td>
<td>N. Baddoo</td>
</tr>
<tr>
<td>SC3.T8</td>
<td>3</td>
<td>EN 1993-1-9</td>
<td>Steel Fatigue - Revised EN 1993-1-9</td>
<td>11</td>
<td>7</td>
<td>M. Lukic</td>
</tr>
<tr>
<td>SC3.T9</td>
<td>3</td>
<td>EN 1993-1-10</td>
<td>Material and Fracture - Revised EN 1993-1-10</td>
<td>9</td>
<td>6</td>
<td>B. Kühn</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H. Friedrich</td>
</tr>
<tr>
<td>SC3.T11</td>
<td>4</td>
<td>EN 1993-3</td>
<td>Consolidation and rationalisation of EN 1993-3</td>
<td>6</td>
<td>4</td>
<td>J. Rees</td>
</tr>
<tr>
<td>SC3.T12</td>
<td>4</td>
<td>EN 1993-4</td>
<td>Harmonisation and Extension of Rules for Storage Structures – Revised EN 1993-4-1 and EN 1993-4-2</td>
<td>8</td>
<td>5</td>
<td>M. Rotter</td>
</tr>
<tr>
<td>SC3.T13</td>
<td>4</td>
<td>EN 1993-1-12, - 4-3, EN 1993-5, -6</td>
<td>Evolution of existing parts of EN 1993 not included in the other parts. Revised EN 1993-1-12, -4-3, -5, -6</td>
<td>4</td>
<td>3</td>
<td>U. Kuhlmann</td>
</tr>
</tbody>
</table>

→ 13 single tasks for 20 parts of Eurocode 3
Mandate M/515

- Distribution of 13 SC3-Tasks
 - 2 Tasks (EN 1993-1-1 and EN 1993-1-8) in Phase 1 as basis where all the other parts are dependent on
 - 4 Tasks in Phase 2, mainly basic parts concerning stability
 - 3 Tasks in Phase 3, mainly basic parts concerning fatigue, toughness and material
 - 4 Tasks in Phase 4, application parts for bridges, silos, masts and tower etc.

- Main issues
 - Further development in view of reduction of NDPs, clarity and ease of use
 - Harmonizing of content, Harmonizing of different parts of Eurocode 3
 - Keep main structure and content for reliability
Mandate M/515

• Principles
 o After discussion the following principles for the further development of Eurocode 3 were decided within CEN/TC250/SC3

Decision 4/2013

- keep the overall structure of EN 1993 and its parts
- improve the clarity
- harmonize and simplify rules (same format, structure, notations,..) and harmonize different parts of Eurocode 3 and if possible also with other relevant Eurocodes
- reduce the overall volume (e.g. by avoiding informative annexes)
- reduce number of alternatives.
Further developments on the example of EN 1993-1-1

- Simplification of the stability rules
- Unification of the rules between general and application parts
- Reduction of the rules in particular for lateral torsional buckling
Further developments on the example of EN 1993-1-1

- Cross-section Classification

 ➢ Adaption of threshold values
 ➢ Adjustment with rules in EC3 Part 1-3, 1-5 and 1-6
 ➢ Continuous transition between Class 2 and 3

<table>
<thead>
<tr>
<th>Class</th>
<th>Part subject to bending</th>
<th>Part subject to compression</th>
<th>Part subject to bending and compression</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Stress distribution in parts (compression positive)

 - Class 3
 - $c/t \leq 124\psi$
 - $c/t \leq 121\psi$
 - $c/t \leq 38\psi$

 - When $\psi > -1$: $c/t \leq 42\psi$

 - When $\psi \leq -1^*$: $c/t \leq 62\psi(1-\psi)(-\psi)$

 - $\psi \leq -1^*$ applies where either the compression stress $\sigma \geq f_c$ or the tensile strain $\varepsilon_t > f_y/E$.

 - $\psi \leq 1^*$ and a compression stress of $\sigma_{\text{com.,E}} \geq f_c$ applies when the tensile strain exceeds $\varepsilon_t = f_y/E$.

 $$\psi \leq -1^* \leq 0.608 + 0.343\psi + 0.049\psi^2$$

 $$\psi \leq 1^* \leq 60.5(1-\nu)^{1/5}$$
Further developments on the example of EN 1993-1-8

- Weld strength function

\[
\tau_{w,Rd} = \frac{f_{u,k} / \sqrt{3}}{\beta_w \cdot \gamma_{M2}}
\]

- tensile strength of base metal
- \(f_{u,k}\)
- correlation factor \(\beta_w\)

→ weld strength for S460 smaller than S355

→ weld strength independent of filler metal

- No possibilities to cover mismatch-effects
- Undermatching may have advantages regarding ductility, weldability, quality

→ Improved design specifications also for steel grades up to 700 N/mm²
Further developments on the example of EN 1993-1-5

• Additional design rules and recommendations for modern stiffener design

• Additional design rules for girders with corrugated webs

• Further developments of rules for FEM-calculations and harmonization with EN 1993-1-6
Further developments

- Integration of EN 1993-1-12 for High Strength Steels up to 700N/mm² in the respective sections in the other general parts of EN 1993-1
- Reorganization and fundamental revision of EN 1993-1-7
 Harmonization with EN 1993-1-5 (plate buckling) and EN 1993-1-6 (shell buckling)
- New design rules for girders with web-openings
Final remarks

• How to influence the future code?

➢ Everyone
 - Applying Eurocodes → Gaining experience
 - Questions and comments to the mirror groups

➢ Collaboration in mirror groups
 - Influence on National Annex
 - Proposals for amendments

➢ Collaboration in Working Groups
 - Experts nominated from National Standardization Bodies
Final remarks

- Aims
 - harmonized and user-friendly design rules

- Modern Eurocodes
 - Necessary basis for complex problems
 - Easy-to-use rules for standard cases (80%)

The application of the Eurocodes pays off

Apply rules, gather experience and influence development
- Create codes for the future -
Thanks for attention!