

Markus Feldmann

EUROCODE Conference I Berlin I 24 May 2023

Structural glass – yesterday

The first rules for glass construction are known from the Intendant of the Duke of Northumberland (1567)

- (1) Because of the important wind, the glazing of the castle breaks and is lost.
- (2) Therefore, it would be good that the glass of each frame is taken down and stocked in security when Our Lordship is out.
- (3) When Our Lordship comes back, it is not so difficult and quite cheap to put the glass in the frame again, since the the reparations due to glass breakage are too expensive.

Structural glass - today

Structural glass - today

Structural glass - today

Current situation

Road to Eurocode 10 – Design of Glass Structures

DIBt EUROCODE Conference | Berlin | 24 May 2023

Timeline CEN/TS 19100

Timeline EN 19100 - EC 10

Integration into Eurocode family

Structure and content of Eurocode 10

Structure and Content of Eurocode 10

-	Part 1 Basis of Design and Materials	 safety issues, robustness and design philosophy reference to product standards, types of glass glass strengths and further properties 	
→	Part 2 Out-of-plane loaded glass elements	 laterally loaded glass elements elements not carrying loads from other structural parts calculation of laminated glass Insulated Glass Units 	
	Part 3 In-plane loaded glass elements and mechanical joints	 axially (mid plane resp.) loaded glass elements elements often carrying loads from other structural parts mechanical joints 	
 ⊾▶	Part 4 Glass selection	 relating to the risk of human injury guidance for specification 	

Relation to product and other standards

Conceptualisation of Eurocode 10 design rules

- Glass is a perfect brittle material, no ductility.
- We must always expect a breakage of a glass ply.
- The cause of glass breakage can be anything: "Failure of unknown origin"

- Glass design is literally "Robustness design".
- Eurocode 10 approach:
 - "Engineering robustness"
 - "Organising design situations"

·	1 A
Engineerir	nd robustness
Engineen	ig iosacaioco

cross sectional	structural	
 Number and thickness of plies Type of glass Type of interlayer Edge protection etc. 	 Detailing Type and capacity of second load path Protection and hold back measures etc. 	Glass roof "Egyptian Courtyard" in "Neues Museum", Berlin

DIBt EUROCODE Conference | Berlin | 24 May 2023

Organising design situations

	SLS	Serviceability Limit State	
Design for the unfractured glass state	ULS	Ultimate Limit State	
Design for state during glass fracture (<i>safe glass fracture</i>)	FLS	Fracture Limit State	
Design for the post-fracture state (<i>residual load capacity</i>)	PFLS	Post-Fracture Limit State	

Conceptualisation – Out of plane loaded components

Conceptualisation – In plane loaded components

	Limit State Scenario (LSS)						
	LSS - 0	LSS - 1	LSS - 2	LSS – 3			
Design for the unfractured glass state	SLS	SLS	SLS	SLS			
	ULS	ULS	ULS	ULS			
Design for the glass fracture state (safe glass fracture)		FLS		FLS			
Design for the post-fractured state (residual load capacity)			PFLS	PFLS			

It is in the hands of European countries which glass element is assigned to which LSS

Design topics

Overview of design topics

	Scope	Main T	ext	Annexes		
prEN 19100-1	gives basic design rules for mechanically supported glass components. This document is concerned with the requirements for resistance , serviceability , fracture characteristics and glass component failure consequences in relation to human safety , robustness , redundancy and durability of glass structures .	Principles of Limit States ULS SLS FLS PFLS Materials/strengths glass interlayer IGUs Partial factors Verification ULS and SLS	Actions cavity pressure for IGUs Structural Analysis interlayer modeling Structural Provisions glass support holes 	 A - Bending strength resistance B - Bending strength resistance with interference factor C - Thermally induced stress caused by temperature differentials in the glass pane D Cold Bending 		
prEN 19100-2	gives design rules for mechanically supported glass components primarily subjected to out of plane loading .	 Verification FLS and PFLS testing theoretical Deflection Limits 	Joints, Connections and Supports • continously edge supported • point supported • cantilevered	 A - Determination of the effective thickness according to the enhanced effective thickness approach (EET) B - Verification of the natural frequency of the glass component C IGUs - calculation of resulting pressure 		
prEN 19100-3	gives design rules for mechanically supported glass components primarily subjected to in-plane loading . It also covers construction rules for mechanical joints for in-plane loaded glass components.	Verification FLS and PFLS testing theoretical 	Joints and Connections • sleeve bearinigs • lapped splices • friction connection Structural Analysis • stability • Imperfections • detailing	 A - Calculation of the critical buckling load N_{cr} or critical bending moment M_{cr,LT} B - Calculation of I_{z,eff} and I_{T,eff} of laminated glass C - Calculation of K_m-values for simplified calculation 		

Key topics – Glass types

	Annealed	
Type of glass	Standard	fg.k
Type of glass	Standard	N/mm ²
Float glass	EN 572-2	45
Polished wired glass	EN 572-3	33
Drawn sheet glass	EN 572-4	45
Patterned glass	EN 572-5	33
Wired patterned glass	EN 572-6	27

Thermally or chemically treated

Glass material per product (whichever composition)	Values for characteristic bending strength $f_{b,k}$ for pre-stressed glass processed from:			
	thermally toughened safety glass to EN 12150-1, and heat soaked thermally toughened safety glass to EN 14179-1	heat strengthened glass to EN 1863-1	chemically strengthened glass to EN 12337-1	
float glass or drawn sheet glass	120 N/mm ²	70 N/mm ²	150 N/mm ²	
patterned glass	90 N/mm ²	55 N/mm²	100 N/mm ²	
enamelled float or drawn sheet glass	75 N/mm²	45 N/mm ²		
enamelled patterned glass	75 N/mm ²	45 N/mm ²		

NOTE 1 The values for thermally toughened safety glass and heat soaked thermally toughened safety glass can also be used for glass conforming to EN 13024-1, EN 14321-1 and EN 15682-1.

NOTE 2 The characteristic bending strength values in the table are the same as in the product standards at the time of publication of this document. In the case of revision of the values in the product standards, then the values in the product standards take precedence.

Key topics – Glass assemblies

Key topics – Design bending strength

		_								
			Pre-stressing treatment						$k_{\rm p}$	
		Γ	None						0,0	
		Г	Heat tre	eatr	nent with ho	rizonta	l process		1,0	
			Heat t	reat	tment with ve	ertical	process		0,60	
		Type	Load duration	on		Ac	tion		kmed	18
		Permanent	Permanent		Self-weight, differer	ice in altit	ude, permanent co	ld bending	0,29	-
				5	Snow (3 to 4 weeks)¢			0,43	
	Glass mate	erial* (whic	hever glass		Factor for t	he glass	surface profile	k _{sp}	0,45	
		ompositio	on)		As produced ^e		Sandblasted		0,58	
	Float glass				1,0 0,6			0,69		
			Ed	Edge finishing factor k-*				0,74		
		As-cut, a groun	rrissed, or d edges ^ь	Se	amed edges	Pol	ished edges		0,77 0,89	
Floa	at glass		0,8		0,9		1,0		1,00	
Patter	ned glass),8		0,8		0,8		1,20 tive of	
Polished	wired glass		0,8		0,8		0,8		udered	
Wired patterned glass 0,8			0,8	0,8		d material				
Values to be used for verifications within a distance note towards the interior of the glass surface. The value h is the thickness of the glass ply; and			e d m e of ti	neasured from the he distance d is d =	edge of th h+c, who	ie pane or of the ere:	o required	of 12 h		
c is the distance of the cutting edge of the chamfer with the glass surface to the edge of the glass or of the hole.										
Arrissed or ground edges by machine or by hand where the abrasive action is across the edge.										
edge.	a or pround ed	see oy macm	ne or oy nanu w	more	. une usrusive actio	n to allong	, and reing an or the			

 $\boldsymbol{f}_{\boldsymbol{g},\boldsymbol{d}} = \left| k_e \cdot k_{sp} \cdot \lambda_A \cdot \lambda_l \cdot k_{mod} \cdot \frac{f_{\boldsymbol{g},\boldsymbol{k}}}{\gamma_m} \right| + \left| k_p \cdot k_{e,p} \cdot \frac{f_{\boldsymbol{b},\boldsymbol{k}} - f_{\boldsymbol{g},\boldsymbol{k}}}{k_i \cdot \gamma_m} \right|$

 $f_{b,k}$

 γ_p

 k_p

 $k_{e,p}$

 k_i

characteristic bending strength of prestressed glass partial safety factor for pre-stress on the surface pre-stressing process factor edge or hole pre-stressing factor interference factor, accounting for the beneficial statistical interference between the distributions of pristine glass strengths and surface pre-stress

Key topics – Design of laminated glass

Effective thickness to calculate the **deflection** of a pane

$$h_{ef,w} = \sqrt[3]{\frac{1}{\sum_{i=1}^{n} h_i^3 + 12\sum_{i=1}^{n} (h_i \cdot d_i^2)} + \frac{1 - \eta}{\sum_{i=1}^{n} h_i^3}}$$

Effective thicknesses to calculate the **bending stress** in a single ply

$$h_{ef,\sigma,i} = \sqrt{\frac{1}{\frac{2 \cdot \eta \cdot |d_i|}{\sum_{i=1}^{n} h_i^3 + 12 \sum_{i=1}^{n} (h_i \cdot d_i^2)} + \frac{h_i}{h_{ef,w}^3}}$$

Key topics – Design of laminated glass

Galuppi, L.; Royer Carfagni, G.: The effective thickness of laminated glass plates, Journal of Mechanics of Materials and Structures 2012

Key topics – Buckling curves

Key topics – Buckling curves

Conclusion

Conclusion

Eurocode 10 - Design of Glass structures joins the Eurocode suite,

- following the principles of modern standards,
- taking into account the special properties of glass as building material,
- covering all topics of design in modern glass construction,
- offering maximum flexibility at the interface to national legislation.
- Eurocode 10, like every Eurocode, fosters innovation.

Presented by Prof. Dr.-Ing. Markus Feldmann Chairman CEN/TC 250/SC 11

RWTH Aachen University Institute of Steel Construction Mies-van-der-Rohe-Str. 1 52074 Aachen

Phone: +49 241 80 25177 Email: feldmann@stb.rwth-aachen.de www.stb.rwth-aachen.de

Source of the tables on slides 22, 23 and 25: CEN/TS 19100

