

EUROCODES

EN 1995

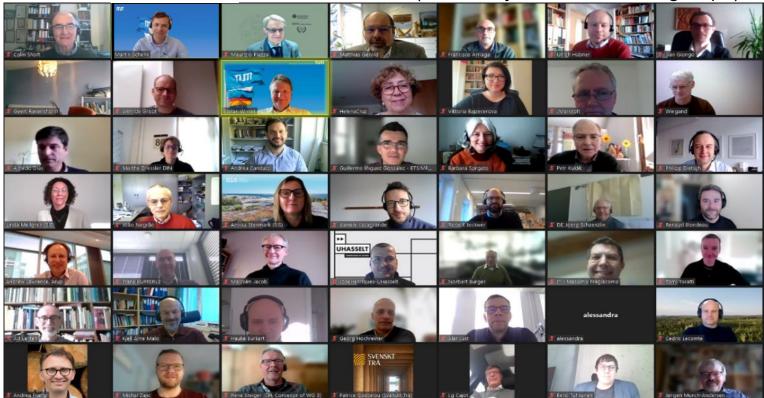
Design of timber structures

Stefan Winter

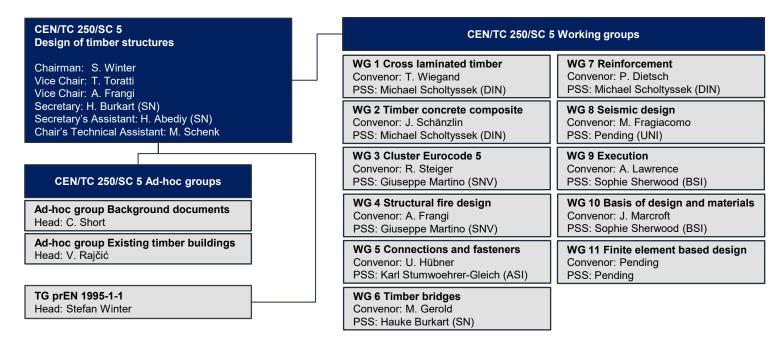
EUROCODES

EN 1995

Design of timber structures



CEN/TC 250/SC 5 Design of timber structures

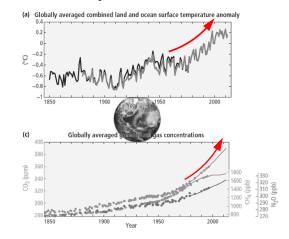

■ A team of ~200 subcommittee members (and many more in the subgroups)

CEN/TC 250/SC 5 Design of timber structures

Organization

The second generation of Eurocode 5: An overview

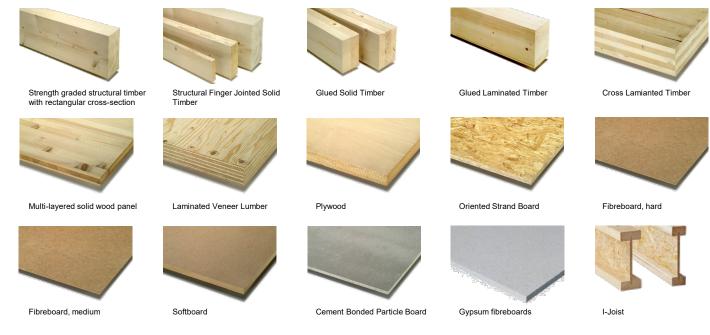
- EN 1995-1:
 - Part 1: General rules and rules for buildings
 - Part 2: Fire Design
 - Part 3: Timber Concrete Composite Structures (currently CEN/TS19103)
- EN 1995-2: Bridges
- EN 1995-3: Execution

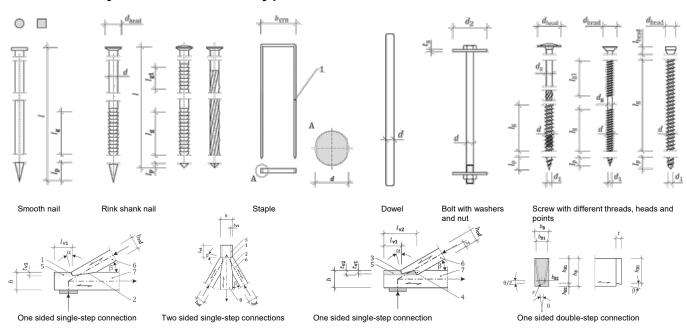


The second generation of Eurocode 5: An overview

- Harmonization with the whole Eurocode family
- Tremendous developments of timber structures in the past 30 years
 - Extensions and revision of several rules for timber design
 - Low-threshold interface between EN 1995 and product standards
- Reduction of NDPs and alternative design methods
- Outsourcing of very specific design rules to normative Annexes

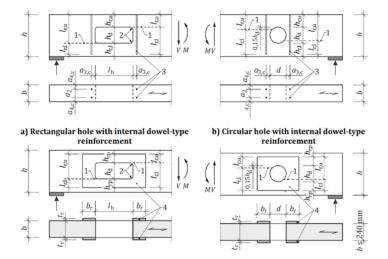
Sensations Strasbourg; Source: KOZ Architectes





A variety of (new) construction products

Source: dataholz.eu


A variety of connection types

Source: prEN 1995-1-1:2023

new content, e.g. holes in beams and reinforcement

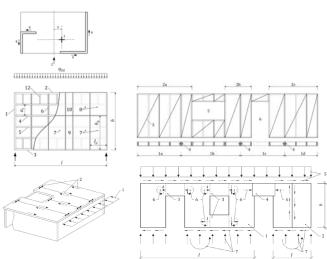
d) Circular hole with external plane

reinforcement

Source: Zukunft Bau Project SWD-10.08.18.7-17.22

Source: prEN 1995-1-1:2023

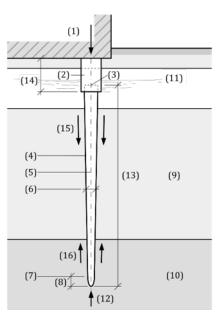
DIBt

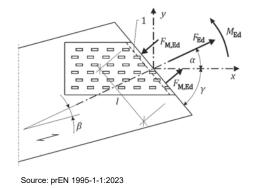

c) Rectangular hole with external plane

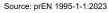
reinforcement

Diaphragms

- Eccentricities in the ground plan
- Floors, roofs and walls



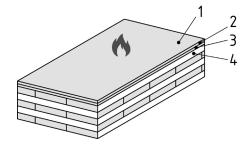



Kampa K8, Aalen, GER. Source: Thomas Wellner, Kampa

Outsourcing of very specific design rules to normative Annexes:
e.g. foundations with timber piles and connections with punched metal plate fasteners



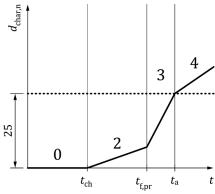
prEN 1995-1-2: Fire design



Cross laminated timber before (left) and after (right) a 30 minutes fire occasion

prEN 1995-1-2: Fire design

- Extension of design rules for:
 - Effective cross-section method (application i.e. on timber I-joists, cross laminated timber, timber-concrete composite elements, etc.)
 - Design model for the verification of the separating function of wall and floor assemblies
 - Failure time (falling off) of the fire protection system



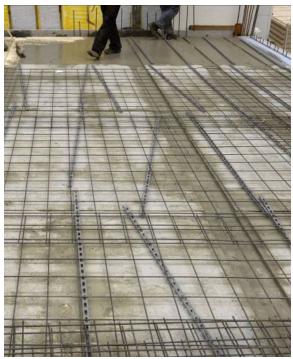
Source: prEN 1995-1-2:2023

prEN 1995-1-2: Fire design

- Revision of design rules for:
 - Charring
 - Timber-frame assemblies
 - Connections in fire
 - Detailing
 - Design of timber structures exposed to physically based design fires

b) Initially protected sides of timber members when $t_{f,pr} > t_{ch}$

Key

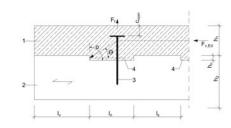

- encapsulated phase (Phase 0)
- normal charring phase (Phase 1)
- protected charring phase (Phase 2)
- post-protected charring phase (Phase 3)
- consolidated charring phase (Phase 4)

Source: prEN 1995-1-2:2023

prEN 1995-1-3: Timber-Concrete composite structures

E3, Berlin. Source: Heinrich Kreuzinger

prEN 1995-1-3: Timber-Concrete composite structures



LCT one, Dornbirn, Austria. Source: Hermann Kaufmann ZT

prEN 1995-1-3: Timber-Concrete composite structures

- Pilot stage period as CEN/TS 19103
- Load-carrying capacity and slip modulus of connections made with:
 - Dowel-type fasteners
 - Bonded-in rods
 - Notched connections
- Modification of creep coefficients for composite action in slab systems and in beam systems
- Calculation method for the effect of inelastic strains

- 1 concrete
- 2 timber
- 3 fastener loaded axially
- 4 notch

Figure 10.2 — Notched connection dimensions

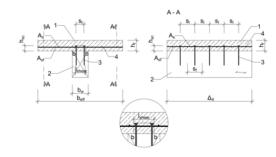
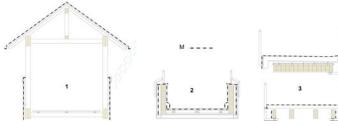
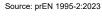


Figure 8.1 — The connection between flange and web

Source: CEN/TS 19103

prEN 1995-2: Bridges


König-Ludwig-Brücke Kempten; Source: Stadt Kempten



prEN 1995-2: Bridges

- Extension of design rules:
 - Durability and detailing, sealing
 - Deck plates
 - Integral bridges

- Revision of design rules for:
 - Timber-concrete composites (TCC)
 - Laminated veneer lumber (LVL)
 - Vibrations and damping
 - Fatigue

Blockträgerbrücke Neckartenzlingen; Source: holzbrueckenbau.com @ Fotograf Walther

Sprengwerkbrücke Benneckenstein; Source: holzbrueckenbau.com

prEN 1995-3: Execution

Skaio Heilbronn, GER. Source: baurt Konstruktions GmbH&Co KG, Klaus Rainer Klebe

prEN 1995-3: Execution

- Execution rules on which Eurocode 5 design directly relies
 - Tolerances in connections
 - Tolerances for member dimensions
 - Tolerances of erected members
 - Moisture control

Source: Informationsdienst Holz

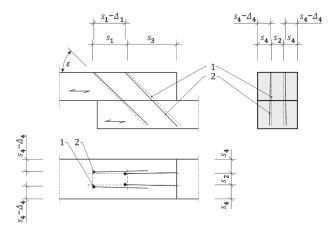
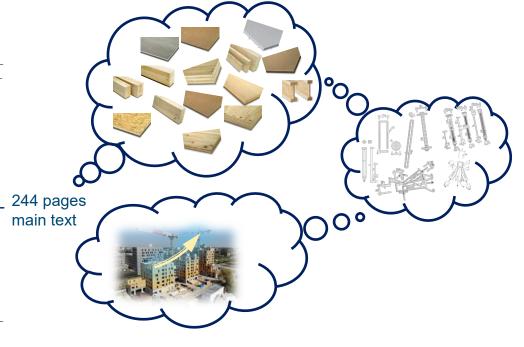
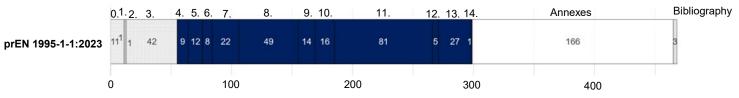


Figure 6.4 — Deviations $\Delta_{n,max}$ from the specified spacings, end and edge distances s_n (for screw axes at angle ε to the grain and parallel to the edge)

Source: prEN 1995-3:2023

The second generation of Eurocode 5: A conclusion


- EN 1995-1:
 - Part 1: General rules and rules for buildings
 - Part 2: Fire Design
 - Part 3: Timber Concrete Composite Structures
- EN 1995-2: Bridges
- EN 1995-3: Execution



The second generation of Eurocode 5: A conclusion

Evolution of the document

EN 1995-1-1:2010		prEN 1995-1-1:2023	
General	1.	1.	Scope
		2.	Normative references
		3.	Terms, definitions and symbols
Basis of design	2.	4.	Basis of design
Material properties	3.	5.	Materials
Durability	4.	6.	Durability
Basis of structural analysis	5.	7.	Structural analysis
Ultimate limit states	6.	8.	Ultimate limit states
Serviceability limit states	7.	9.	Serviceability limit states
		10.	Fatigue
Connections with metal fasteners	8.	11.	Connections
Components and assemblies	9.	12.	Mechanically and glued webbed or flanged beams
		13.	Diaphragms
		14.	Foundations with timber piles
Structural detailing and control	10.		
Annexes			Annexes
			Bibliography

The second generation of Eurocode 5: A conclusion

TUM kindergarden, Munich, GER. Source: Hermann Kaufmann ZT

Thank you for your attention.

Presented by

Stefan Winter Chair of CEN/TC 250/SC 5

Technical University of Munich

TUM School of Engineering and Design Chair of Timber Structures and Building Construction Arcisstraße 21 D-80333 Munich

Phone: +49.89.289.22416

Email: hbb@tum.de

www.cee.ed.tum.de/en/hbb

