GEOTECHNICAL DESIGN with worked examples

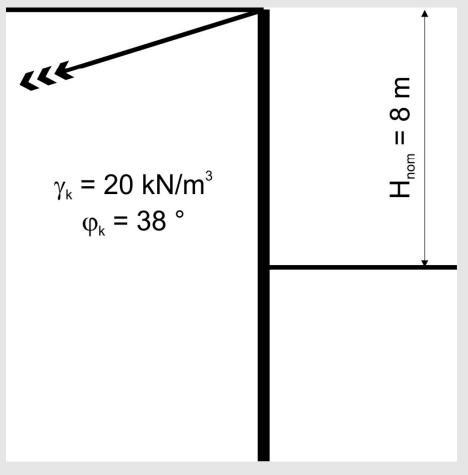
13-14 June 2013, Dublin

Worked example – anchored sheet pile wall

Dr Andrew Bond Director, Geocentrix Ltd Chairman TC250/SC7

GEOTECHNICAL DESIGN with worked examples

 European Commission



Worked example – anchored sheet pile wall **DESIGN SITUATION**

Design situation for anchored sheet pile wall

GEOTECHNICAL DESIGN with worked examples

13-14 June, Dublin

Earth pressure theory

Use Brinch Hansen's equation for $K_{a,h}$ (for a vertical wall):

$$K_{a,\beta} = \left(\frac{\cos\beta - \sqrt{\cos^2\beta - \cos^2\varphi}}{\cos\beta + \sqrt{\cos^2\beta - \cos^2\varphi}}\right)\cos\beta$$

Horizontal and vertical component of K_a are:

$$K_{a,h} = K_{a,\beta} \times \cos\beta$$
$$K_{a,v} = K_{a,\beta} \times \sin\beta \left(= K_{a,h} \times \tan\beta\right)$$

GEOTECHNICAL DESIGN with worked examples

Some numbers to save you time...

Self-weight of wall stem

$$N_{stem,k} = \gamma_{c,k} \times t_s \times H$$
$$= 25 \times 0.7 \times 6 = 105 \, kN/m$$

Self-weight of wall base

$$\mathcal{N}_{base,k} = \gamma_{c,k} \times t_b \times B$$
$$= 25 \times 0.8 \times 3.9 = 78 \, kN/m$$

Self-weight of backfill

$$\mathcal{N}_{fill,k} = \gamma_k \times b_{heel} \times \left(\frac{H+h_f}{2}\right)$$
$$= 19 \times 2.25 \times \left(\frac{6+6.82}{2}\right) = 274 \, kN/m$$

GEOTECHNICAL DESIGN with worked examples

13-14 June, Dublin

Earth pressure coefficients

φ	N _q	φ	N _q
20	6.4	30	18.4
21	7.1	31	20.6
22	7.8	32	23.2
23	8.7	33	26.1
24	9.6	34	29.4
25	10.7	35	33.3
26	11.9	36	37.8
27	13.2	37	42.9
28	14.7	38	48.9
29	16.4	39	56.0

13-14 June, Dublin

Worksheet DA1/DA2* – anchored sheet pile

Anchored Verification of draine	ıple JRC-07 i sheet pile wall d strength (limit state GEO) n Approach 1
<u>Design situation</u> Consider a sheet pile wall that retains H _{nom} = 8.0m a	of dense sand with characteristic weight density
	$\varphi_{\mathbf{k}}$ = 38°. The ground behind the wall is horizontal and
m subject to a blanket surcharge (representing traffic l	loading) - but, for simplificty, we will assume $q_{\mathbf{k}}$ = OkPa. The
ground is dry. The sheet pile is a Z section with flange thickness t _f	= 8.5mm, web thickness t _w = 8.5mm, web height
h = 302mm, clutch-to-clutch breadth b = 670mm, e	lastic section modulus $W_{el} = 1400 \frac{\text{cm}^3}{m}$, and characteristic
yield strength f _{yk} = 355MPa.	m
An anchor with ultimate design resistance of $R_{\alpha,d} = 1$	$kN = 130 \frac{k}{m}$ will be installed at an angle $\theta = 30^{\circ}$ to the
horizontal to stabilize the wall.	m
γ_{κ} = 20 kN/m ³ ϕ_{κ} = 38 °	H H H H H H H H H H H H H H H H H H H
$\begin{array}{l} \underline{Scometry}\\ Allowing for an unplanned excervation in ULS verifications \\ H_d = H_{nom} + \min(10\% \times H_{nom}, 0.5m) = \bullet \\ \underline{Material properties}\\ Partial factors from Set \begin{pmatrix} M1\\ M2 \end{pmatrix}: \gamma_{\varphi} = \bullet \end{array}$	ions, the design retained height of the wall is:

Calculate:

- 1. Earth pressure coefficients K_a and K_p
- 2. Overturning and restoring moments about anchor
- 3. Depth of embedment needed to ensure equilibrium
- 4. Maximum bending moment and shear force along the wall
- 5. Required anchor resistance
- 6. Bending and shear resistance of sheet pile section

GEOTECHNICAL DESIGN with worked examples

 European Commission

Worked example – anchored sheet pile wall **SOLUTION**

GEOTECHNICAL DESIGN with worked examples

13-14 June, Dublin

Solutions <u>DA1/DA2*</u> – anchored sheet pile

Verification	DA1		DA2*
	DA1-1	DA1-2	
Depth of embedment	1.38 m	2.01 m	2.05 m
Bending moment	296 kNm/m	303 kNm/m	331 kNm/m
Shear force	81.9 kN/m	81.7 kN/m	88.2 kN/m
Anchor resistance needed	81.9 kN/m	81.7 kN/m	88.2 kN/m

GEOTECHNICAL DESIGN with worked examples

13-14 June, Dublin

Summary of key points

DAs 1 and 2* produce very similar depths of embedment, maximum bending moment and shear force along the wall, and required anchor resistance.

A subtlety of DA1 is that Combination 1 can quite often produce a larger anchor force (and shear force and bending moment) that Combination 2 – because the depth of embedment for equilibrium is so much shorter

In standard DEU practice, rectangular earth pressure distributions are favoured over triangular – these result in larger anchor forces but smaller bending moments

GEOTECHNICAL DESIGN with worked examples

tormission

blog.eurocode7.com www.decodingeurocode2.com www.decodingeurocode7.com **DECODING THE EUROCODES**

GEOTECHNICAL DESIGN with worked examples

Geotechnical design with worked examples

European Commission

eurocodes.jrc.ec.europa.eu