GEOTECHNICAL DESIGN with worked examples

13-14 June 2013, Dublin

Retaining structures II – design of embedded walls

European Commission

Dr Andrew Bond Director, Geocentrix Ltd Chairman TC250/SC7

13-14 June, Dublin

GEOTECHNICAL DESIGN with worked examples

Outline of talk

Scope and contents Design situations and limit states Basis of design for embedded walls Verification of strength Limiting equilibrium Soil-structure interaction analysis Numerical methods Verification of serviceability Supervision, monitoring, and maintenance Summary of key points

GEOTECHNICAL DESIGN with worked examples

 European Commission

Retaining structures II – design of embedded walls SCOPE AND CONTENTS

13-14 June, Dublin

Scope of EN 1997-1 Section 9 Retaining structures

Gravity walls – covered in separate lecture

Embedded walls

- Relatively thin walls of steel, reinforced concrete, or timber
 - Supported by anchorages, struts, and/or passive earth pressure
- The bending capacity of such walls plays a significant role in the support of the retained material
- e.g. cantilever steel sheet pile walls; anchored or strutted steel or concrete sheet pile walls; diaphragm walls
- Composite retaining structures
 - Walls composed of elements of the above two types
 - e.g. double sheet pile wall cofferdams; earth structures reinforced by tendons, geotextiles, or grouting; structures with multiple rows of ground anchorages or soil nails

Silos are covered by EN 1991-4

Contents of EN 1997-1 Section 9 Retaining structures

Section 9 applies to retaining structures supporting ground (i.e. soil, rock, or backfill) and/or water

- §9.1 General (6 paragraphs)
- §9.2 Limit states (4)
- §9.3 Actions, geometrical data and design situations (26)
- §9.4 Design and construction considerations (10)
- §9.5 Determination of earth pressures (23)
- §9.6 Water pressures (5)
- §9.7 Ultimate limit state design (26)
- §9.8 Serviceability limit state design (14)

Scope of EN 1997-1 Section 8 Anchors

- Anchorage transmits a tensile force to a load bearing formation of soil or rock
- Pre-stressed anchorage
 - Anchor head + tendon free length + tendon bond length (grouted in ground)
- Non pre-stressed anchorage
 - Anchor head + tendon free length + restraint (e.g. Fixed length grouted in ground, deadman anchor, screw anchor, rock bolt)
- Anchorages comprising tension piles shall be designed according to Section 7
- Section 8 applies to design of temporary and permanent anchorages to:
 - Support retaining structures
 - Stabilize slopes, cuts, or tunnels
 - Resist uplift forces on structures
- Soil nails are NOT covered (see BS 8006 and EN 14490 instead)

Contents of EN 1997-1 Section 8 Anchorages

Section 8 of Eurocode 7 Part 1 applies to pre-stressed and non prestressed anchorages

- §8.1 General (12/6 paragraphs)
- §8.2 Limit states (1/4)
- §8.3 Design situations and actions (2)
- §8.4 Design and construction considerations (15)
- §8.5 Ultimate limit state design (10)
- §8.6 Serviceability limit state design (6)
- §8.7 Suitability tests (4)
- §8.8 Acceptance tests (3)
- §8.9 Supervision and monitoring (1)

13-14 June, Dublin

Contents of EN 1997-1's Annexes for retaining structures

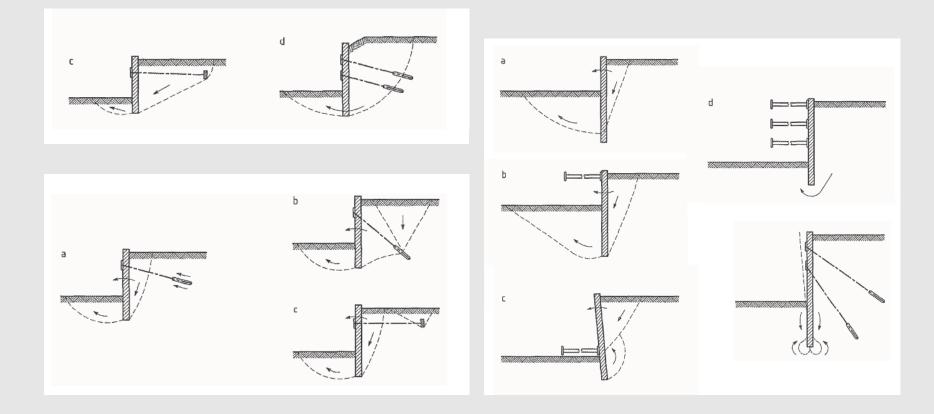
Annex C of Eurocode 7 Part 1 provides informative text relevant to retaining structures

Annex C Sample procedures to determine earth pressures (21 paragraphs) §C.1 Limit values of earth pressure (3 paragraphs) §C.2 Analytical procedure for obtaining limiting active and passive earth pressures (14) §C.3 Movements to mobilise earth pressures (4)

GEOTECHNICAL DESIGN with worked examples

 European

 Commission


13-14 June 2013, Dublin

Retaining structures II – design of embedded walls DESIGN SITUATIONS AND LIMIT STATES

GEOTECHNICAL DESIGN with worked examples

Limit modes for overall stability and foundation failures (Figs 9.1, 9.3-4, & 9.6)

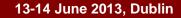
¹³⁻¹⁴ June, Dublin

13-14 June, Dublin

Anticipated and unplanned excavations §9.3.2.2.(2)

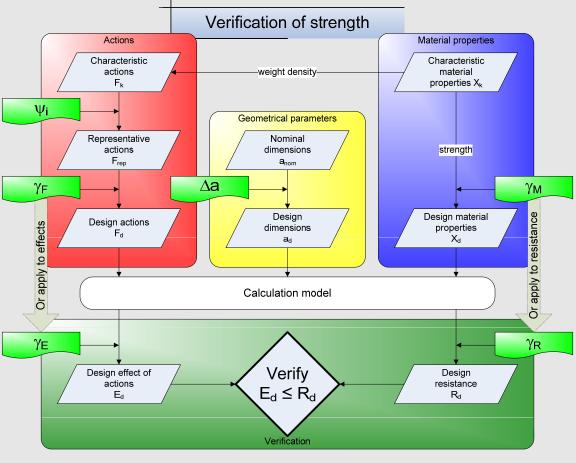
Design geometry shall account for anticipated excavation or possible scour in front of the retaining structure

For ULS verifications:


$$H_d = H_{nom} + \Delta H$$

Wall type	For normal site control ∆H
Cantilever	10% H
Supported	10% height below lowest prop
Maximum	0.5 m

GEOTECHNICAL DESIGN with worked examples


**** European Commission

Retaining structures II – design of embedded walls BASIS OF DESIGN FOR EMBEDDED WALLS

Verification of strength for GEO/STR (Bond & Harris, 2008)

GEOTECHNICAL DESIGN with worked examples

13-14 June, Dublin

Design Approaches explained

Design Approach							
1		2	3				
Combination 1	Combination 2						
Actions	Material properties	Actions/effects & resistances	Structural actions/effects & material properties				
<u>A1</u> + M1 + R1	<u>A2</u> + <u>M2</u> + R1	<u>A1</u> + M1 + <u>R2</u>	<u>A1/A2</u> + <u>M2</u> + R3				
(Major) <u>factors</u> >> 1.0; (minor) <u>factors</u> > 1.0 A1-A2 = factors on actions/effects M1-M2 = factors on material properties R1-R3 = factors on resistances							

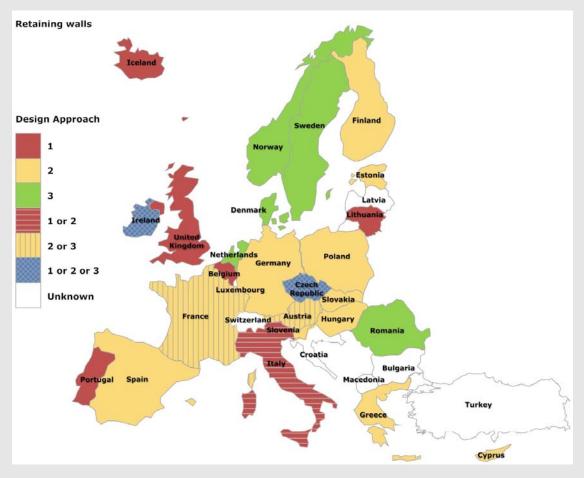
©2013. Author name. All rights reserved

13-14 June, Dublin

Partial factors for GEO/STR (DA1): footings, walls, and slopes

Parameter		Symbol	Combination 1			Combination 2		
			A1	M1	R1	A2	M2	R1
Permanent action (G)	Unfavourable	γ _G	1.35			1.0		
	Favourable	$(\gamma_{G,fav})$	1.0			1.0	_	
Variable action (Q)	Unfavourable	γ _Q	1.5			1.3		
	Favourable	-	(0)			(0)		
Shearing resistance (tan	φ)	γ_{ϕ}					1.25	
Effective cohesion (c')		γ_{c}					1.25	
Undrained shear strength (c_u)		γ_{cu}		1.0			1.4	
Unconfined compressive strength (q_u)		γ_{qu}					1.4	
Weight density (γ)		γ_{γ}					1.0	
Bearing resistance (R _v)		γ_{Rv}						
Sliding resistance (R _h)		γ_{Rh}			1.0			1.0
Earth resistance (R _e)		γ_{Re}						
Factors given for persistent and transient design situations								
15 ©2005-13 Geocentrix Ltd. All rights reserved								

13-14 June, Dublin


Partial factors for GEO/STR (DAs 2/3): footings, walls, slopes

Parameter		Symbol	Design Approach 2			Design Approach 3			
			A1	M1	R2	A1#	A2*	M2	R3
Permanent	Unfavourable	γ_{G}	1.35			1.35	1.0		
action (G)	Favourable	(γ _{G,fav})	1.0			1.55	1.0		
Variable action	Unfavourable	$\gamma_{\mathbf{Q}}$	1.5			1.5	1.3		
(Q)	Favourable	-	(0)			(())		
Shearing resistan	ce (tan φ)	γ_{ϕ}						1.25	
Effective cohesion (c')		γ_{c}						1.25	
Undrained shear strength (c_u)		γ_{cu}		1.0					
Unconfined comp. str. (q _u)		γ_{qu}						1.4	
Weight density (y)		γ_{γ}						1.0	
Bearing resistance	Bearing resistance (R _v)				1.4	_			
Sliding resistance (R _h)		γ_{Rh}			1.1				1.0
Earth resistance (R _e) walls					1.4	-			1.0
Earth resistance (R_e) slopes		γ_{Re}			1.1				
Factors given for persistent and transient design situations									
*Applied to structural actions; *applied to geotechnical actions									
16 ©2005-13 Geocentrix Ltd. All rights reserved									

13-14 June, Dublin

National choice of Design Approach for retaining walls

GEOTECHNICAL DESIGN with worked examples

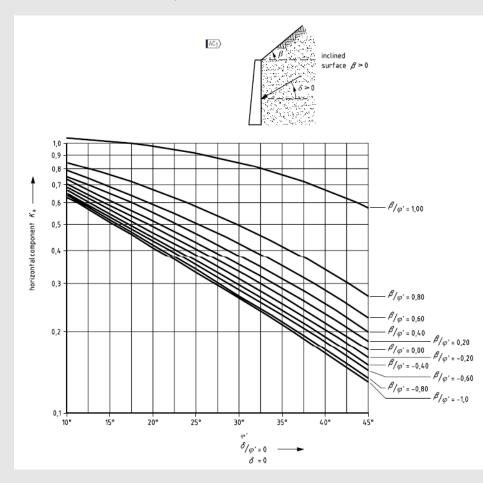
**** European Commission

Retaining structures II – design of embedded walls VERIFICATION OF STRENGTH: LIMITING EQUILIBRIUM

GEOTECHNICAL DESIGN with worked examples

Active and passive limit states (Annex C)

Eurocode 7 Part 1 (+Corrigendum 1) gives expressions for active/passive earth pressures:


$$\sigma_{a} = K_{a} \left(\int_{0}^{z} \gamma dz + q - u \right) - 2c \sqrt{K_{a}(1 + a/c)} + u$$
$$\sigma_{p} = K_{p} \left(\int_{0}^{z} \gamma dz + q - u \right) + 2c \sqrt{K_{p}(1 + a/c)} + u$$

 $\sigma_a(z)$, $\sigma_p(z) = active/passive stress normal to wall at depth z <math>K_a$, $K_p = horizontal active/passive earth pressure coefficient <math>\gamma =$ weight density of retained ground; c = ground cohesion q = vertical surface load; z = distance down face of wall a = wall adhesion

13-14 June, Dublin

Charts of earth pressure coefficients (based on Kerisel & Absi) from EN 1997-1

 $-\theta$)tan φ

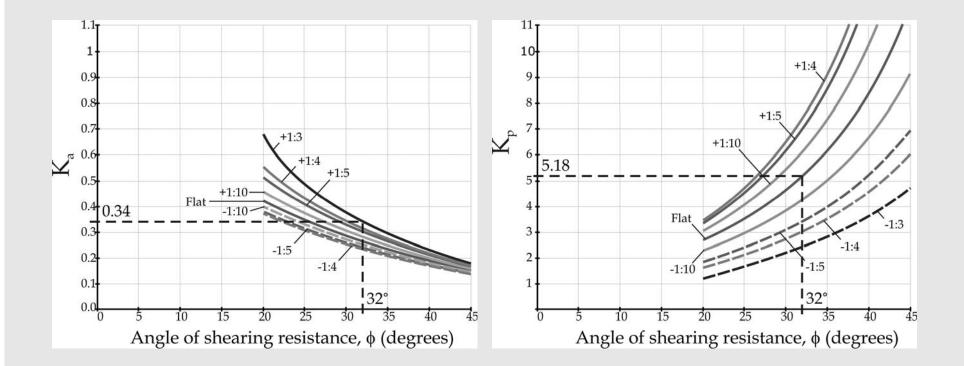
GEOTECHNICAL DESIGN with worked examples

13-14 June, Dublin

'New' formulation for active and passive earth coefficients (Annex C)

$$\begin{aligned} \sigma_{a}^{\prime} &= K_{a\gamma} \left(\int_{0}^{z} \gamma dz - u \right) + K_{aq} q - K_{ac} c & K_{a\gamma} \\ K_{p\gamma} \\ &= K_{p\gamma} \left(\int_{0}^{z} \gamma dz - u \right) + K_{pq} q + K_{pc} c & K_{aq} \\ K_{pq} \\ &= K_{n} \times \cos^{2} \beta \end{aligned}$$

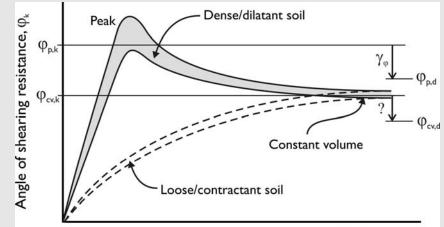
$$\begin{aligned} &2m_{t} &= \cos^{-1} \left(\frac{-\sin \beta}{\pm \sin \varphi} \right) \mp \varphi - \beta & K_{ac} \\ &K_{pc} \\ &= (K_{n} - 1) \times \cot \varphi \end{aligned}$$


$$\begin{aligned} &2m_{w} &= \cos^{-1} \left(\frac{\sin \delta}{\sin \varphi} \right) \mp \varphi \mp \delta & K_{n} = \frac{1 \pm \sin \varphi \times \sin(2m_{w} \pm \varphi)}{1 \mp \sin \varphi \times \sin(2m_{t} \pm \varphi)} e^{\pm 2(m_{t} + \beta - m_{w})} \end{aligned}$$

GEOTECHNICAL DESIGN with worked examples

13-14 June, Dublin

Charts of earth pressure coefficients based on Brinch Hansen (Bond & Harris, 2008)


Angle of interface friction §9.5.1(6)

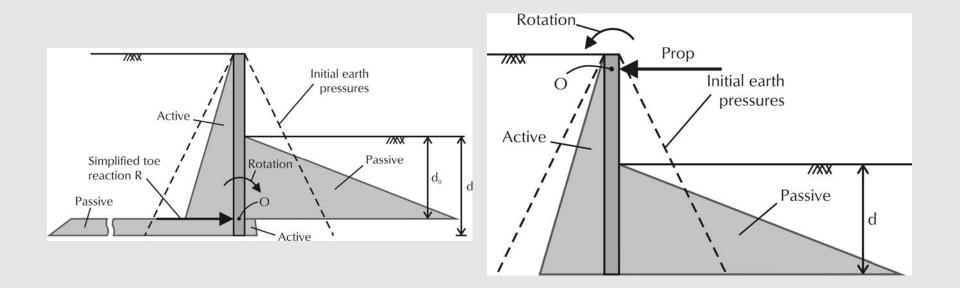
Eurocode 7 suggests δ_d is determined from soil's design constant-volume angle of shearing resistance $\phi_{cv,d}$

Values of k are:

- 1 for soil against cast in-situ concrete
- ⅔ for soil against precast concrete
- UK National Annex states:
 - It might be more appropriate to select the design value of φ_{cv} directly

Perhaps it is better to use $\gamma_{\phi,cv} < \gamma_{\phi}$ to determine $\phi_{cv,d}$?

Displacement


$$\delta_d = k\varphi_{cv,d} = k \tan^{-1}\left(\frac{\tan\varphi_{cv,k}}{\gamma_{\varphi}}\right)$$

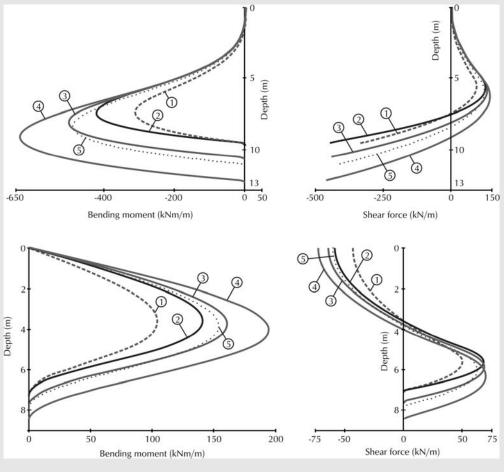
$$\delta_d = k\varphi_{cv,d} = k \tan^{-1} \left(\frac{\tan \varphi_{cv,k}}{\gamma_{\varphi,cv}} \right)?$$

13-14 June, Dublin

Fixed vs free earth conditions (Bond & Harris, 2008)

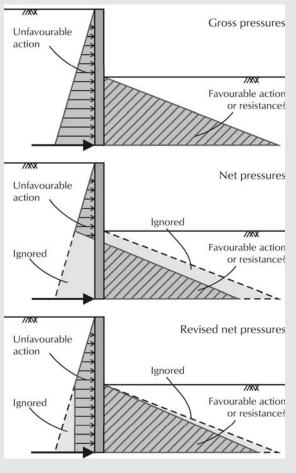
13-14 June, Dublin

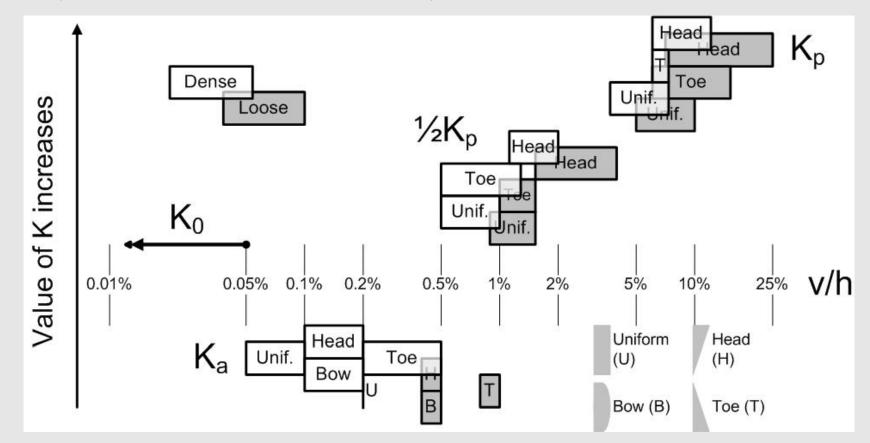
Are passive earth pressures an action or resistance?


Assumption made about passive earth pressure		Partial factors applied to				
		Shearing resistance	Earth pressure			
		(tan ϕ_k)	Active (σ_{ak})	Passive (σ_{pk})		
1	SLS	÷ 1.0	× 1.0	× 1.0		
2	Unfavourable action			$\times \gamma_{G} = 1.35$		
3	Favourable action	$\div \gamma_{\phi} = 1.0$	$\times \gamma_{G} = 1.35$	$\times \gamma_{G,fav} = 1.0$		
4	Resistance			$\div \gamma_{Re} = 1.4$		
5	(Doesn't matter)	$\div \gamma_{\phi} = 1.25$	× 1.0	× 1.0		

"Unfavourable (or destabilising) and favourable (stabilising) permanent actions may in some situations be considered as coming from a single source. If ... so, a single partial factor may be applied to the sum of these actions or to the sum of their effects"

EN 1997-1 §2.4.2(9) NOTE


Possible outcomes vary greatly! (Bond and Harris, 2008)


13-14 June, Dublin

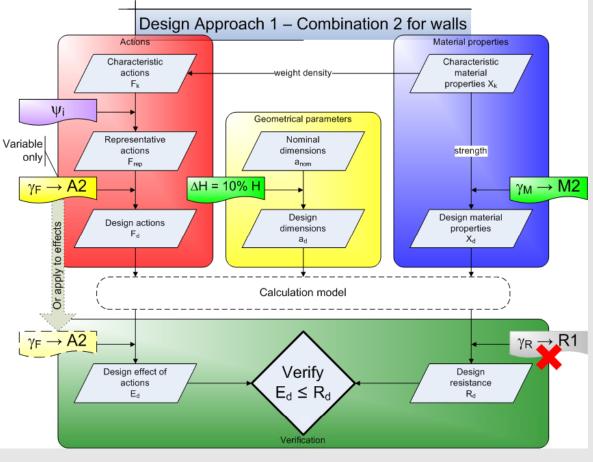
Should the outcome depend on details of the calculation? (Bond & Harris, 2008)

Movement needed to trigger limiting states (Bond & Harris, 2008)

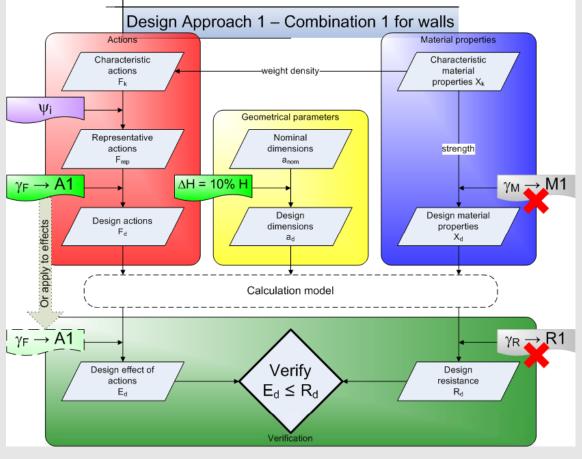
¹³⁻¹⁴ June, Dublin

GEOTECHNICAL DESIGN with worked examples

 European


 Commission

Retaining structures II – design of embedded walls VERIFICATION OF STRENGTH: THE 'STAR' APPROACH TO DA1-1


Verification of strength DA1-2 for embedded walls (Bond & Harris, 2008)

13-14 June, Dublin

Verification of strength using DA1-1 for embedded walls (Bond & Harris, 2008)

13-14 June, Dublin

Verification of strength using DA1-1* for embedded walls (Bond & Harris, 2008)

©2005-13 Geocentrix Ltd. All rights reserved

Using DA1-1* to verify ULS to Eurocode 7

Step	Factor	Design Approach			
			1	2	3
		1-1*	1-2		
1. Multiply variable actions by ratio γ_{Q} / γ_{G}	γ _Q / γ _G	1.11	1.3	1.11	1.3†
2. Apply partial factors to soil strengths	$\gamma_\phi=\gamma_{\sf c}$	1.0	1.25	1.0	1.25
	γ_{cu}	1.0	1.4	1.0	1.4
3. Perform soil structure interaction analysi	S				
4. Check ratio of restoring to overturning moment $M_R/M_O \ge \gamma_G \ge \gamma_R$	$\gamma_{G} X \gamma_{Re}$	1.35	1.0	1.89	1.0
5. Apply partial factor to action effects	ŶG	1.35	1.0	1.35	1.0†
⁺ Partial factors from Set A2 for geotechnica	l actions				

GEOTECHNICAL DESIGN with worked examples

European Commission

13-14 June 2013, Dublin

Retaining structures II – design of embedded walls VERIFICATION OF SERVICEABILITY

Comparable experience is paramount

A cautious estimate of the distortion and displacement of retaining walls, and the effects on supported structures and services, shall always be made on the basis of comparable experience. This estimate shall include the effects of construction of the wall. The design may be justified by checking that the estimated displacements do not exceed the limiting values EN 1997-1 §9.8.2(2)P

Displacement calculations shall be undertaken:

where nearby structures and services are unusually sensitive to displacement where comparable experience is not well established

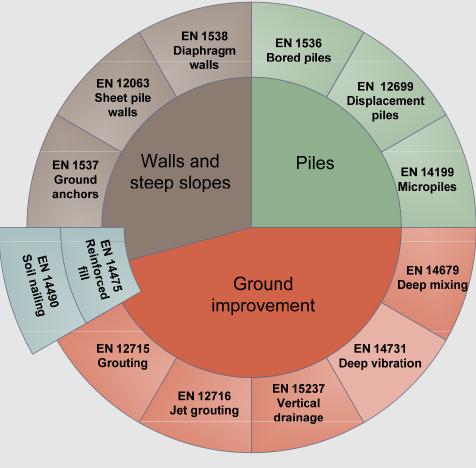
Displacement calculations should be considered where the wall ...

retains more than 6 m of cohesive soil of low plasticity

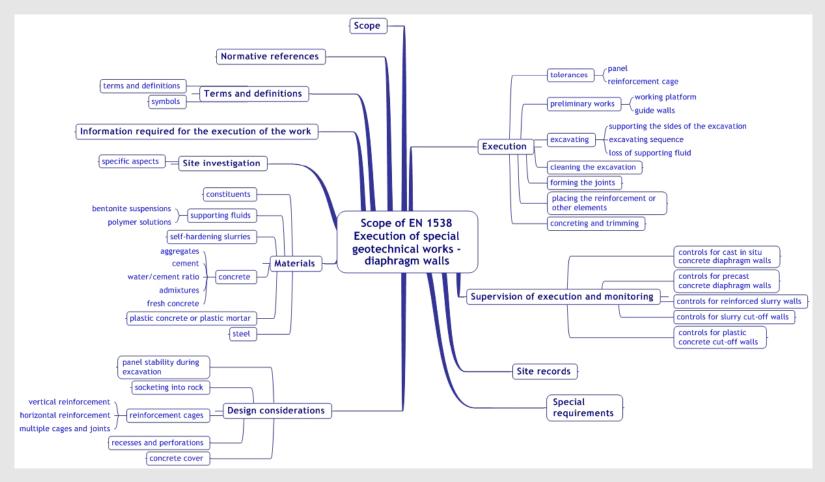
retains more than 3 m of soils of high plasticity

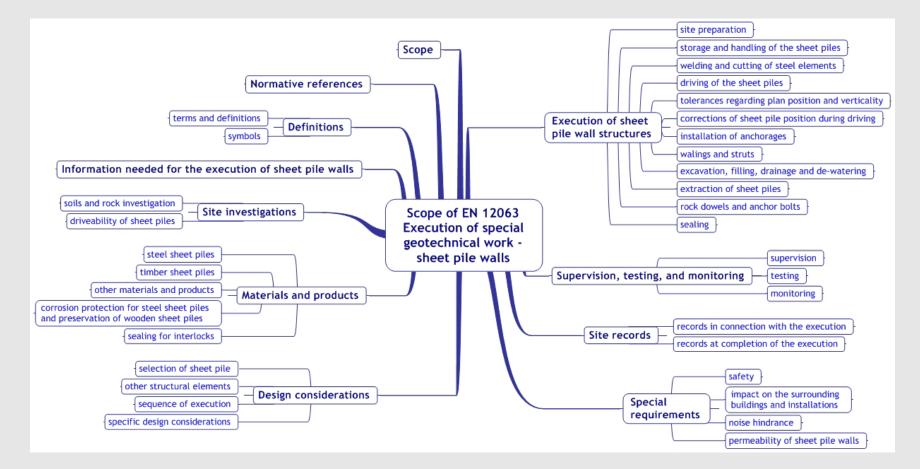
is supported by soft clay within its height or beneath its base

GEOTECHNICAL DESIGN with worked examples

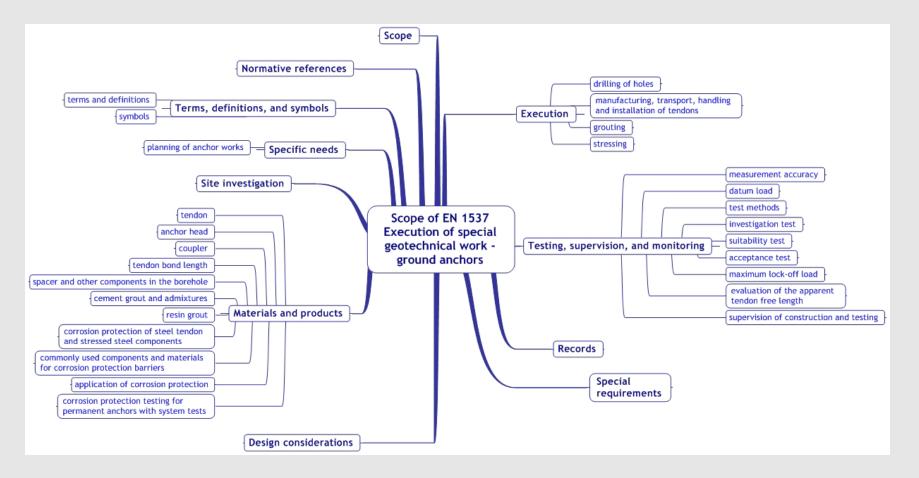

**** European Commission

Retaining structures II – design of embedded walls SUPERVISION, MONITORING, AND MAINTENANCE


Execution of special geotechnical works (Bond and Harris, 2008)


13-14 June, Dublin

Scope of EN 1538 Execution of ... diaphragm walls (Bond & Harris, 2008)


Scope of EN 12063 Execution of ... sheet pile walls (Bond & Harris, 2008)

13-14 June, Dublin

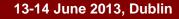
Scope of EN 1537 Execution of ... ground anchors (Bond & Harris, 2008)

GEOTECHNICAL DESIGN with worked examples

 European Commission

Retaining structures II – design of embedded walls SUMMARY OF KEY POINTS

Summary of key points


Design of embedded walls to Eurocode 7 involves checking:
vertical bearing capacity of the wall
any reduction in wall friction owing to vertical loads
stability calculations based on limiting equilibrium, soil-structure
interaction, or fully numerical methods
considerable debate about the way passive earth pressures should be
handled - as a resistance, as a favourable action, or as an
unfavourable action (invoking the single source principle)
use of partial factors into sub-grade reaction and numerical models has
to be done carefully

Overall impact should be:

little change in what we build
more thought about how we design

GEOTECHNICAL DESIGN with worked examples

European Commission

blog.eurocode7.com www.decodingeurocode2.com www.decodingeurocode7.com **DECODING THE EUROCODES**

GEOTECHNICAL DESIGN with worked examples

Geotechnical design with worked examples

European Commission

eurocodes.jrc.ec.europa.eu