Example JRC-03
 T-shaped wall
 Verification of drained strength (limit state GEO)
 Design Approach 2*

Design situation

Consider a T-shaped gravity wall with retained height $\mathrm{H}=6.0 \mathrm{~m}$ that is required to support granular fill with characteristic weight density $\gamma_{k}=19 \frac{\mathrm{kN}}{\mathrm{m}^{3}}$ and drained strength parameters $\varphi_{\mathrm{k}}=32.5^{\circ}$ and $c^{\prime}{ }_{\mathrm{k}}=0 \mathrm{kPa}$.
A variable surcharge $P_{k}=5 \mathrm{kPa}$ acts behind the wall on ground that rises at an angle $\beta=20^{\circ}$ to the horizontal. The dimensions of the wall are as follows: overall breadth (assumed) $B=3.9 \mathrm{~m}$ base thickness $\dagger_{b}=0.8 \mathrm{~m}$ toe width $b_{\dagger}=0.95 \mathrm{~m}$ thickness of wall stem $\dagger_{s}=0.7 \mathrm{~m}$. The weight density of reinforced concrete is $\gamma_{c, k}=25 \frac{\mathrm{kN}}{\mathrm{m}^{3}}$ The properties of the ground beneath the wall are the same as the fill. This ground and the fill are both dry.

Geometry

Width wall heel is:

$$
b_{\text {heel }}=B-b_{t}-t_{s}=2.25 \mathrm{~m}
$$

Height of fill above wall heel is:

$$
h_{f}=H+b_{\text {heel }} \times \tan (\beta)=6.82 \mathrm{~m}
$$

Height of wall above wall heel including the thickness of base is:

$$
H_{\text {heel }}=h_{f}+t_{b}=7.62 \mathrm{~m}
$$

Depth to base of footing is:

$$
d=t_{b}=0.8 \mathrm{~m}
$$

Material properties

Characteristic materialk properties are used throughout this calculation

Actions

Characteristic self-weight of wall (permanent action) is:

$$
\begin{aligned}
& \text { wall stem } W_{\text {stem, }} G k=\gamma_{c, k} \times \dagger_{s} \times H=105 \frac{\mathrm{kN}}{\mathrm{~m}} \\
& \text { wall base } W_{\text {base }, G k}=\gamma_{c, k} \times \dagger_{b} \times B=78 \frac{\mathrm{kN}}{\mathrm{~m}}
\end{aligned}
$$

Characteristic total self-weight of wall is:

$$
W_{\text {wall }, G k}=W_{\text {stem }, G k}+W_{\text {base }, G k}=183 \frac{\mathrm{kN}}{\mathrm{~m}}
$$

Characteristic total self-weight of backfill is:

$$
W_{\text {fill }, G k}=\gamma_{k} \times b_{\text {heel }} \times \frac{\left(H+h_{f}\right)}{2}=274 \frac{k N}{m}
$$

Characteristic total self-weight of wall including backfill is then:

$$
W_{G k}=W_{\text {wall,Gk }}+W_{\text {fill,Gk }}=457 \frac{\mathrm{kN}}{\mathrm{~m}}
$$

Characteristic surcharge (variable) is:

$$
\begin{aligned}
& q_{Q k}=P_{k}=5 \mathrm{kPa} \\
& Q_{Q k}=q_{Q k} \times b_{\text {heel }}=11.3 \frac{\mathrm{kN}}{\mathrm{~m}}
\end{aligned}
$$

Characteristic active earth pressure coefficient (for calculating inclined thrust) is:

$$
K_{a \beta, k}=\left(\frac{\cos (\beta)-\sqrt{\cos (\beta)^{2}-\cos \left(\varphi_{k}\right)^{2}}}{\cos (\beta)+\sqrt{\cos (\beta)^{2}-\cos \left(\varphi_{k}\right)^{2}}}\right) \times \cos (\beta)=0.365
$$

Equivalent coefficient for calculating horizontal thrust is: $\mathrm{K}_{\mathrm{ah}, \mathrm{k}}=\mathrm{K}_{\mathrm{a} \beta, \mathrm{k}} \cos (\beta)=0.343$

Characteristic inclined thrust (at angle β to the horizontal) from earth pressure on back of virtual plane is:

$$
\begin{aligned}
& \text { from ground } E_{a, G k}=K_{a \beta, k} \times\left(\frac{1}{2} \gamma_{k} H_{\text {heel }}{ }^{2}\right)=201 \frac{\mathrm{kN}}{\mathrm{~m}} \\
& \text { from surcharge } E_{a, Q k}=K_{a \beta, k} \times q_{Q k} \times H_{\text {heel }}=13.9 \frac{\mathrm{kN}}{\mathrm{~m}} \\
& \text { total } E_{a, k}=E_{a, G k}+E_{a, Q k}=214.9 \frac{\mathrm{kN}}{\mathrm{~m}}
\end{aligned}
$$

Horizontal component of characteristic thrust is then: $H_{E k}=E_{a, k} \cos (\beta)=202 \frac{\mathrm{kN}}{\mathrm{m}}$
Vertical (normal) component of characteristic weight and thrust: $N_{E k}=W_{G k}+E_{a, k} \sin (\beta)=530.5 \frac{\mathrm{kN}}{\mathrm{m}}$

Moments about wall toe

Characteristic overturning moments (destabilizing) about wall toe:

$$
\begin{aligned}
& \text { from ground } M_{G k}=E_{a, G k} \times\left(\frac{1}{3} H_{\text {heel }} \cos (\beta)-B \sin (\beta)\right)=211.6 \frac{\mathrm{kNm}}{\mathrm{~m}} \\
& \text { from surcharge } M_{Q k}=E_{a, Q k} \times\left(\frac{1}{2} H_{\text {heel }} \cos (\beta)-B \sin (\beta)\right)=31.2 \frac{\mathrm{kNm}}{\mathrm{~m}}
\end{aligned}
$$

Total characteristic destabilising moment is: $M_{d s t, k}=M_{G k}+M_{Q k}=242.8 \frac{\mathrm{kNm}}{\mathrm{m}}$

Characteristic restoring moments (stabilizing) about wall toe:

$$
\begin{aligned}
& \text { from wall stem } M_{\text {stem }, G k}=W_{\text {stem }}, G k \times\left(b_{\dagger}+\frac{t_{s}}{2}\right)=136.5 \frac{\mathrm{kNm}}{\mathrm{~m}} \\
& \text { from wall base } M_{\text {base }, G k}=W_{\text {base }, G k \times \frac{B}{2}=152.1 \frac{\mathrm{kNm}}{\mathrm{~m}}}^{\text {from backfill } M_{\text {fill }, G k}=\gamma_{k} \times b_{\text {heel }} \times\left[H \times\left(B-\frac{b_{\text {heel }}}{2}\right)+\left(\frac{h_{f}-H}{2}\right) \times\left(B-\frac{b_{\text {heel }}}{3}\right)\right]=766.9 \frac{\mathrm{kNm}}{\mathrm{~m}}}
\end{aligned}
$$

Total characteristic stabilising moment is: $M_{\text {stb, }}=M_{\text {stem }}, G k+M_{\text {base }, G k}+M_{\text {fill, }}$ Gk $=1055.5 \frac{\mathrm{kNm}}{\mathrm{m}}$
Line of action of resultant force is a distance from the toe: $x=\left(\frac{M_{s t b, k}-M_{d s t, k}}{N_{E k}}\right)=1.53 \mathrm{~m}$
Eccentricity of actions from centre line of base is: $e_{k}=\frac{B}{2}-x=0.42 \mathrm{~m}$
Effective width of base is then: $B^{\prime}=B-2 e_{k}=3.06 \mathrm{~m}$

Bearing resistance

Characteristic bearing capacity factors:

$$
\begin{aligned}
& N_{q, k}=e^{\pi \tan \left(\varphi_{k}\right)} \times\left(\tan \left(45^{\circ}+\frac{\varphi_{k}}{2}\right)\right)^{2}=24.6 \\
& \left.N_{\gamma, k}=2\left(N_{q, k}-1\right) \times \tan \left(\varphi_{k}\right)=30.1 \quad \text { (in DEU, use } N_{b, k}=\left(N_{q, k}-1\right) \times \tan \left(\varphi_{k}\right)=15.0\right)
\end{aligned}
$$

Characteristic shape factors (for an infinitely long footing): $s_{q}=1.0$ and $s_{\gamma}=1.0$
Characteristic inclination factors: (using $m_{B}=2$ for an infinitely long footing)

$$
i_{q}=\left(1-\frac{H_{E k}}{N_{E k}+A c_{k}^{\prime} \cot \left(\varphi_{k}\right)}\right)^{m_{B}}=0.38 \text { and } i_{\gamma}=i_{q}^{\frac{m_{B}+1}{m_{B}}}=0.24
$$

Characteristic bearing resistance (in terms of stress/pressure) is:
from overburden $q_{R v q, k}=\gamma_{k} \times d \times N_{q, k} \times s_{q} \times i_{q}=143.3 \mathrm{kPa}$
from body-mass $q_{R v \gamma, k}=\frac{1}{2} B^{\prime} \times \gamma_{k} \times N_{\gamma, k} \times s_{\gamma} \times i_{\gamma}=207.8 \mathrm{kPa}$
total $q_{R v, k}=q_{R v q, k}+q_{R v \gamma, k}=351.1 \mathrm{kPa}$
Characteristic bearing resistance (in terms of force) is:
$N_{R k}=q_{R v, k} \times B^{\prime}=1076 \frac{\mathrm{kN}}{\mathrm{m}}$

Verificiations

Verification of resistance to sliding

Partial factors from Set A1: $\gamma_{G}=1.35, \gamma_{G, f a v}=1$, and $\gamma_{Q}=1.5$
Design thrust (at angle β to the horizontal) from earth pressure on back of virtual plane is:

$$
\begin{aligned}
& \text { from ground } E_{a, G d}=\gamma_{G} \times E_{a, G k}=271.4 \frac{\mathrm{kN}}{\mathrm{~m}} \\
& \text { from surcharge } E_{a, Q d}=\gamma_{Q} \times E_{a, Q k}=20.8 \frac{\mathrm{kN}}{\mathrm{~m}} \\
& \text { total } E_{a, d}=E_{a, G d}+E_{a, Q d}=292.2 \frac{\mathrm{kN}}{\mathrm{~m}}
\end{aligned}
$$

Horizontal component of design thrust is then: $H_{E d}=E_{a, d} \cos (\beta)=274.6 \frac{\mathrm{kN}}{\mathrm{m}}$
Vertical (normal) component of design weight and thrust: $N_{E d}=\gamma_{G} W_{G k}+E_{a, d} \sin (\beta)=716.9 \frac{\mathrm{kN}}{\mathrm{m}}$

Partial factors from Set R2: $\gamma_{R h}=1.1$
For cast-in-place concrete, interface friction angle is $k=1$ times the constant-volume angle of shearing
Assume $\varphi_{\mathrm{cv}, \mathrm{k}}=30^{\circ}$

$$
\delta_{\mathrm{k}}=\mathrm{k} \times \varphi_{\mathrm{cv}, \mathrm{k}}=30^{\circ}
$$

Design sliding resistance (drained), ignoring adhesion (as required by EN 1997-1 exp. 6.3a)
$H_{R d}=\frac{\gamma_{G, f a v} \times N_{E k} \times \tan \left(\delta_{k}\right)}{\gamma_{R h}}=278.4 \frac{\mathrm{kN}}{\mathrm{m}}$
'Degree of utilization' $\Lambda=\frac{H_{E d}}{H_{R d}}=99 \%$ or 'Overdesign factor' $O D F=\frac{H_{R d}}{H_{E d}}=1.01$
The design is unacceptable if the degree of utilization is $>100 \%$ (or overdesign factor is <1)

Verification of bearing resistance

Partial factor from Set R2: $\gamma_{R v}=1.4$
Design bearing resistance is:

$$
N_{R d}=\frac{N_{R k}}{\gamma_{R v}}=768.4 \frac{\mathrm{kN}}{\mathrm{~m}}
$$

Design thrust (at angle β to the horizontal) from earth pressure on back of virtual plane is:

$$
N_{E d}=716.9 \frac{\mathrm{kN}}{\mathrm{~m}}
$$

'Degree of utilization' $\Lambda=\frac{N_{E d}}{N_{\mathrm{Rd}}}=93 \%$ or 'Overdesign factor' $O D F=\frac{N_{\mathrm{Rd}}}{N_{\mathrm{Ed}}}=1.07$
The design is unacceptable if the degree of utilization is $>100 \%$ (or overdesign factor is < 1)

Verification of resistance to toppling

Design de-stabilizing moment is:

$$
M_{E d, d s t}=\left(\gamma_{G} \times M_{G k}\right)+\left(\gamma_{Q} \times M_{Q k}\right)=332 \frac{\mathrm{kNm}}{\mathrm{~m}}
$$

Design stabilizing moment is (approximately):

$$
M_{E d, s t b}=\gamma_{G, f a v} \times M_{s t b, k}=1056 \frac{\mathrm{kNm}}{\mathrm{~m}}
$$

'Degree of utilization' $\Lambda=\frac{M_{E d, d s t}}{M_{E d, s t b}}=31 \%$ or 'Overdesign factor' $O D F=\frac{M_{E d, s t b}}{M_{E d, d s t}}=3.17$
The design is unacceptable if the degree of utilization is $>100 \%$ (or overdesign factor is <1)

