**GEOTECHNICAL DESIGN** with worked examples

13-14 June 2013, Dublin

# Worked example – T-shaped gravity wall

European Commission

Dr Andrew Bond Director, Geocentrix Ltd Chairman TC250/SC7

**GEOTECHNICAL DESIGN** with worked examples

European Commission



## Worked example – T-shaped gravity wall **DESIGN SITUATION**



#### **GEOTECHNICAL DESIGN** with worked examples

13-14 June, Dublin

#### Design situation for gravity wall example





**GEOTECHNICAL DESIGN** with worked examples

13-14 June, Dublin

#### Earth pressure theory

Use Rankine's equation for K<sub>a</sub>:

$$K_{a,\beta} = \left(\frac{\cos\beta - \sqrt{\cos^2\beta - \cos^2\varphi}}{\cos\beta + \sqrt{\cos^2\beta - \cos^2\varphi}}\right)\cos\beta$$

Horizontal and vertical component of K<sub>a</sub> are:

$$K_{a,h} = K_{a,\beta} \times \cos\beta$$
$$K_{a,v} = K_{a,\beta} \times \sin\beta \left(= K_{a,h} \times \tan\beta\right)$$



**GEOTECHNICAL DESIGN** with worked examples

#### Some numbers to save you time...

Self-weight of wall stem

$$W_{stem,k} = \gamma_{c,k} \times t_s \times H$$
$$= 25 \times 0.7 \times 6 = 105 \, kN/m$$

Self-weight of wall base

$$\mathcal{N}_{base,k} = \gamma_{c,k} \times t_b \times B$$
$$= 25 \times 0.8 \times 3.9 = 78 \, kN/m$$

Self-weight of backfill

$$\mathcal{N}_{fill,k} = \gamma_k \times b_{heel} \times \left(\frac{H+h_f}{2}\right)$$
$$= 19 \times 2.25 \times \left(\frac{6+6.82}{2}\right) = 274 \, kN/m$$



**GEOTECHNICAL DESIGN** with worked examples

13-14 June, Dublin

#### **Bearing capacity coefficients**

| φ  | N <sub>q</sub> | φ  | N <sub>q</sub> |
|----|----------------|----|----------------|
| 20 | 6.4            | 30 | 18.4           |
| 21 | 7.1            | 31 | 20.6           |
| 22 | 7.8            | 32 | 23.2           |
| 23 | 8.7            | 33 | 26.1           |
| 24 | 9.6            | 34 | 29.4           |
| 25 | 10.7           | 35 | 33.3           |
| 26 | 11.9           | 36 | 37.8           |
| 27 | 13.2           | 37 | 42.9           |
| 28 | 14.7           | 38 | 48.9           |
| 29 | 16.4           | 39 | 56.0           |



#### 13-14 June, Dublin

#### Worksheet – T-shaped gravity wall



Calculate:

- 1. Earth pressure coefficient K<sub>a</sub>
- 2. Moments about wall toe, the determine eccentricity of loading
- 3. Bearing resistance under eccentric, inclined loads
- 4. Sliding resistance
- 5. Toppling resistance

**GEOTECHNICAL DESIGN** with worked examples

\*\*\*\* European Commission

13-14 June 2013, Dublin

## Worked example – T-shaped gravity wall SOLUTION



### Solutions <a href="mailto:DA1/DA2\*">DA1/DA2\*</a> – T-shaped gravity wall

| Verification    | DA1    |        | DA2*   | Traditional    |
|-----------------|--------|--------|--------|----------------|
|                 | DA1-1  | DA1-2  |        |                |
| Sliding         | 66%    | 85%    | 99%    | $F_{s} = 1.52$ |
| Bearing         | 125%   | 230%   | 93%    | $F_{b} = 2.03$ |
| Eccentricity    | 0.92 m | 0.64 m | 0.42 m | Same as        |
| Effective width | 2.05 m | 2.63 m | 3.06 m | DA2*           |
| Toppling        | 31%    | 31%    | 31%    | $F_0 = 4.35$   |



**GEOTECHNICAL DESIGN** with worked examples



### Summary of key points

DA2\* requires a wall base of width B  $\ge$  3.9 m Equivalent to traditional F<sub>s</sub> = 1.5 and F<sub>b</sub> = 2.0

DA1 requires a wall base of width  $B \ge 5.1 \text{ m}$ Equivalent to traditional  $F_s = 1.86$  and  $F_b = 3.93$ 

Main difference between DAs 1 and 2\* is bearing resistance Calculated load eccentricity is very different Effective width is much smaller in DA1

**GEOTECHNICAL DESIGN** with worked examples

tormission



# blog.eurocode7.com www.decodingeurocode2.com www.decodingeurocode7.com **DECODING THE EUROCODES**

**GEOTECHNICAL DESIGN** with worked examples



# Geotechnical design with worked examples

European Commission

#### eurocodes.jrc.ec.europa.eu