Example JRC-01
 3-storey domestic building subject to wind Combinations of actions

Design situation

Consider an $n=3$ storey building, $B_{x}=48 \mathrm{~m}$ by $\mathrm{B}_{y}=15 \mathrm{~m}$ on plan, which is divided into $N_{x}=8$ bays in the building's long direction and $N_{y}=2$ bays in its short direction. The height of each storey is $h=3.2 \mathrm{~m}$. The floors of the building, which are $\mathrm{d}_{\text {floor }}=250 \mathrm{~mm}$ thick.

Shear walls, intended to resist overturning, are located at both ends of the building and are $\dagger_{w}=300 \mathrm{~mm}$ thick by $b_{w}=4 m$ wide on plan. A water tank, $d_{\text {tank }}=2 m$ deep by $I_{\text {tank }}=5 \mathrm{~m}$ long by $b_{\text {tank }}=5 \mathrm{~m}$ wide sits in the middle of the roof. The shear walls are supported by strip foundations of length $I_{f d n}=6.5 \mathrm{~m}$, breadth $b_{f d n}=2 m$, and thickness $\mathrm{d}_{\mathrm{fdn}}=1.5 \mathrm{~m}$.
The following characteristic imposed/wind actions act on the building:

$$
\text { roof loading } a_{r f, k}=0.6 \mathrm{kPa}
$$

office floor loading $q_{o f f, k}=2.5 \mathrm{kPa}$
partition loading $q_{\text {par, }}=0.8 \mathrm{kPa}$
wind (horizontal) $q_{w, k}=1.15 \mathrm{kPa}$
The characteristic weight density of reinforced concrete is $\gamma_{c, k}=25 \frac{\mathrm{kN}}{\mathrm{m}^{3}}$ and of water $\gamma_{w, k}=10 \frac{\mathrm{kN}}{\mathrm{m}^{3}}$.

Geometry

Total plan area of building is:

$$
A_{\text {tot }}=B_{x} \times B_{y}=720 m^{2}
$$

The tributary area above the stability wall has area:

$$
A=\left(\frac{B_{y}+b_{w}}{2}\right) \times \frac{1}{2}\left(\frac{B_{x}}{N_{x}}\right)=28.5 m^{2}
$$

Characteristic actions - permanent

Self-weight of slabs:

$$
\text { Floor: } g_{\mathrm{fI}, G \mathrm{k}}=\gamma_{c, \mathrm{k}} \times \mathrm{d}_{\text {floor }}=6.25 \mathrm{kPa}
$$

Screed on roof: $g_{s c r, G k}=1.5 \mathrm{kPa}$
Raised floor: $g_{r-f l}, G k=0.5 \mathrm{kPa}$ (removable)
Self-weight of water tank on roof - only half total weight is carried by the core wall

$$
\left.W_{\text {tank }, G k}=\frac{1}{2} \times \gamma_{w, k} \times d_{\text {tank }} \times I_{\text {tank }} \times b_{\text {tank }}=250 k N \text { (removable }\right)
$$

Self-weight of core wall:

$$
W_{\text {wall }, G k}=\gamma_{c, k} \times \dagger_{w} \times b_{w} \times(n \times h)=288 k N
$$

Self-weight of pad foundation:

$$
W_{f d n, G k}=\gamma_{c, k} \times d_{f d n} \times b_{f d n} \times I_{f d n}=488 k N
$$

Total self-weight of non-removable members (normal to ground):

$$
N_{G k_{1}}=\left(n \times g_{f l, G k} \times A\right)+\left(g_{s c r, G k} \times A\right)+W_{w a l l}, G k+W_{f d n, G k}=1353 k N
$$

Total self-weight of removable members (normal to ground):

$$
N_{G k_{2}}=\left[(n-1) \times g_{r-f l}, G k \times A\right]+W_{\text {tank }, G k}=279 k N
$$

Characteristic actions - variable

Imposed actions (normal to ground):
on roof: $N_{r f, Q k}=q_{r f, k} \times A=17.1 \mathrm{kN}$
on floors: $N_{f l, Q k}=(n-1) \times\left(q_{o f f, k}+q_{\text {par }, k}\right) \times A=188.1 \mathrm{kN}$
Wind actions (horizontal direction):
on roof: $Q_{w, r f, Q k}=q_{w, k} \times \frac{h}{2} \times \frac{B_{x}}{2}=44.2 \mathrm{kN}$
on each floor: $Q_{w, f l, Q k}=q_{w, k} \times h \times \frac{B_{x}}{2}=88.3 \mathrm{kN}$
Total wind action (normal to ground):
$N_{w, Q k}=0 k N$
Moment effect of wind action (on ground):
first floor: $M_{W, Q k_{1}}=Q_{w, f l, Q k} \times\left[(n-2) \times h+d_{f d n}\right]=415 \mathrm{kNm}$
second floor: $M_{w, Q k_{2}}=Q_{w, f l, Q k} \times\left[(n-1) \times h+d_{f d n}\right]=698 \mathrm{kNm}$
roof: $M_{w, Q k_{3}}=Q_{w, r f, Q k} \times\left(n \times h+d_{f d n}\right)=490 \mathrm{kNm}$
total: $M_{w, Q k}=\sum M_{w, Q k}=1603 \mathrm{kNm}$

Combinations of actions for persistent and transient design situations - ULS verifications

Combination 1 - wind as leading variable action, vertical actions unfavourable, partial factors from Set B

Partial factors

on permanent actions: $\gamma_{G}=\gamma_{G, B}=1.35$
on variable actions (wind): $\gamma_{Q, w}=\gamma_{Q, B}=1.5$
on variable actions (imposed loads): $\gamma_{Q, i}=\gamma_{Q, B}=1.5$
Combination factors:
for wind $\psi_{w}=1.0$
for imposed load in office areas (Category B): $\psi_{f I}=\psi_{0, i, B}=0.7$
for imposed load on roof (Category H): $\psi_{r f}=\psi_{0, i, H}=0$

Design value of normal action effect:

$$
N_{E d}=\gamma_{G}\left(N_{G k_{1}}+N_{G k_{2}}\right)+\gamma_{Q, w} \psi_{w} N_{w, Q k}+\gamma_{Q, i}\left(\psi_{f l} N_{f l, Q k}+\psi_{r f} N_{r f, Q k}\right)=2400 \mathrm{kN}
$$

Design value of moment effect:

$$
M_{E d}=\gamma_{Q, w} \psi_{w} M_{w, Q k}=2405 \mathrm{kNm}
$$

Combination 2 - wind as leading variable action, vertical actions favourable, partial factors from Set B

Design value of normal action effect:

$$
N_{E d}=\gamma_{G, f a v}\left(N_{G k_{1}}+N_{G k_{2}}\right)=1631 \mathrm{kN}
$$

Design value of moment effect:

$$
M_{E d}=\gamma_{Q, w} \psi_{w} M_{w, Q k}=2405 \mathrm{kNm}
$$

Combination 3 - imposed loads as leading variable action, vertical actions unfavourable, partial factors from Set B

Combination factors:
for wind $\psi_{w}=\psi_{0, w}=0.6$
for imposed load in office areas (Category B): $\psi_{f l}=1$
for imposed load on roof (Category H): $\psi_{r f}=1$
Design value of normal action effect:
$N_{E d}=\gamma_{G}\left(N_{G k_{1}}+N_{G k_{2}}\right)+\gamma_{Q, w} \psi_{w} N_{w, Q k}+\gamma_{Q, i}\left(\psi_{f I} N_{f I, Q k}+\psi_{r f} N_{r f, Q k}\right)=2510 \mathrm{kN}$
Design value of moment effect:
$M_{E d}=\gamma_{Q, w} \psi_{w} M_{w, Q k}=1443 \mathrm{kNm}$

Combination 4 - wind as leading variable action, vertical actions unfavourable, partial factors from Set C

Partial factors:
on permanent actions: $\gamma_{G}=\gamma_{G, C}=1$
on variable actions (wind): $\gamma_{Q, w}=\gamma_{Q, C}=1.3$
on vriable actions (imposed loads): $\gamma_{Q, i}=\gamma_{Q, C}=1.3$
Combination factors:
for wind $\psi_{w}=1.0$
for imposed load in office areas (Category B): $\psi_{f I}=\psi_{0, i, B}=0.7$
for imposed load on roof (Category H): $\psi_{r f}=\psi_{0, i, H}=0$
Design value of normal action effect:
$N_{E d}=\gamma_{G}\left(N_{G k_{1}}+N_{G k_{2}}\right)+\gamma_{Q, w} \psi_{w} N_{w, Q k}+\gamma_{Q, i}\left(\psi_{f l} N_{f I, Q k}+\psi_{r f} N_{r f, Q k}\right)=1802 \mathrm{kN}$
Design value of moment effect:
$M_{E d}=\gamma_{Q, w} \psi_{w} M_{w, Q k}=2084 \mathrm{kNm}$

Combination 5 - wind as leading variable action, vertical actions favourable, partial factors from Set C

Design value of normal action effect:

$$
N_{E d}=\gamma_{G, f a v}\left(N_{G k_{1}}+N_{G k_{2}}\right)=1631 \mathrm{kN}
$$

Design value of moment effect:
$M_{E d}=\gamma_{Q, w} \psi_{w} M_{w, Q k}=2084 \mathrm{kNm}$
Combination 6 - imposed loads as leading variable action, vertical actions unfavourable, partial factors from Set C Combination factors:
for wind $\psi_{w}=\psi_{0, w}=0.6$
for imposed load in office areas (Category B): $\psi_{f l}=1$
for imposed load on roof (Category H): $\psi_{r f}=1$
Design value of normal action effect:
$N_{E d}=\gamma_{G}\left(N_{G k_{1}}+N_{G k_{2}}\right)+\gamma_{Q, w} \psi_{w} N_{w, Q k}+\gamma_{Q, i}\left(\psi_{f l} N_{f l, Q k}+\psi_{r f} N_{r f, Q k}\right)=1898 \mathrm{kN}$
Design value of moment effect:
$M_{E d}=\gamma_{Q, w} \psi_{w} M_{w, Q k}=1250 \mathrm{kNm}$

Combinations of actions for quasi-permanent design situations - SLS verifications

Combination 7 - wind as leading variable action, vertical actions unfavourable, partial factors for SLS

Partial factors
on permanent actions: $\gamma_{G}=\gamma_{G, S L S}=1$
on variable actions (wind): $\gamma_{Q, w}=\gamma_{Q, S L S}=1$
on variable actions (imposed loads): $\gamma_{Q, i}=\gamma_{Q, S L S}=1$
Combination factors:
for wind $\psi_{w}=\psi_{2, w}=0$
for imposed load in office areas (Category B): $\psi_{f I}=\psi_{2, i, B}=0.3$
for imposed load on roof (Category H): $\psi_{r f}=\psi_{2, i, H}=0$
Design value of normal action effect:
$N_{E d}=\gamma_{G}\left(N_{G k_{1}}+N_{G k}\right)+\gamma_{Q, w} \psi_{w} N_{w, Q k}+\gamma_{Q, i}\left(\psi_{f I} N_{f l, Q k}+\psi_{r f} N_{r f, Q k}\right)=1688 \mathrm{kN}$
Design value of moment effect:

$$
M_{E d}=\gamma_{Q, w} \psi_{w} M_{w, Q k}=0 \mathrm{kNm}
$$

Combination 8 - wind as leading variable action, vertical actions favourable, partial factors for SLS

Design value of normal action effect:

$$
N_{E d}=\gamma_{G, f a v}\left(N_{G k_{1}}+N_{G k_{2}}\right)=1631 \mathrm{kN}
$$

Design value of moment effect:

$$
M_{E d}=\gamma_{Q, w} \psi_{w} M_{w, Q k}=0 k N m
$$

Combination 3 - imposed loads as leading variable action, vertical actions unfavourable, partial factors for SLS Combination factors:
for wind $\psi_{w}=\psi_{2, w}=0$
for imposed load in office areas (Category B): $\psi_{f I}=\psi_{2, i, B}=0.3$
for imposed load on roof (Category H): $\psi_{r f}=\psi_{2, i, H}=0$
Design value of normal action effect:

$$
N_{E d}=\gamma_{G}\left(N_{G k_{1}}+N_{G k_{2}}\right)+\gamma_{Q, w} \psi_{w} N_{w, Q k}+\gamma_{Q, i}\left(\psi_{f l} N_{f l, Q k}+\psi_{r f} N_{r f, Q k}\right)=1688 \mathrm{kN}
$$

Design value of moment effect:

$$
M_{E d}=\gamma_{Q, w} \psi_{w} M_{w, Q k}=0 k N m
$$

