GEOTECHNICAL DESIGN with worked examples

13-14 June 2013, Dublin

Worked example – combination of actions

European Commission

Dr Andrew Bond Director, Geocentrix Ltd Chairman TC250/SC7

GEOTECHNICAL DESIGN with worked examples

 European Commission

Worked example – combination of actions **DESIGN SITUATION**

Design situation for combination of actions

©2005-13 Geocentrix Ltd. All rights reserved

Design situation for combination of actions

Roof loading 0.6 kPa Office floor loading 2.5 kPa Partition loading 0.8 kPa Wind loading 1.15 kPa (ignore notional loads)

13-14 June, Dublin

EN 1997-1 §2.4.6.1(2)P

Eurocode 7 defines the representative action F_{rep} as:

$$F_{rep} = \psi F_k \Longrightarrow \sum_{j \ge 1} G_{k,j} + Q_{k,1} + \sum_{i > 1} \psi_i Q_{k,i}$$

 F_k = characteristic value

 ψ = combination factor (taken from EN 1990) = 1.0, ψ_0 , ψ_1 , or ψ_2 G_{k,j} = characteristic permanent action; Q_{k,i} = characteristic variable action Q_{k,1} = leading variable action; Q_{k,i>1} = accompanying variable action

13-14 June, Dublin

Combination of actions

Combin- ation	Rep. var'ble actions	Limit state	Design situation (DWL = design working life)	Example
Character- istic	$\psi_0 \; Q_k$	ULS	Persistent (period ~ DWL)	Normal use
		ULS	Transient (period << DWL)	During construction or repair
		SLS	Irreversible limit states	Stress checks for reinforcement
Frequent	$\psi_1 \; Q_k$	ULS	Accidental	Exceptional conditions, e.g. fire, explosion, impact, etc.
		ULS	Seismic	Earthquake
		SLS	Reversible limit states	Crack width/decompression checks in pre-stressed concrete or survival condition in accidental ULS combination waiting for repair
Quasi- permanent	$\psi_2 \; Q_k$	ULS	Accidental	Fire, explosion, impact, etc.
		ULS	Seismic	Earthquake
		SLS	Long-term effects and	Crack width checks in reinforced
			appearance	concrete
6 ©2005-13 Geocentrix Ltd. All rights reserved				

13-14 June, Dublin

Combination of actions – for buildings

Action	Ψο	Ψ1	Ψ2			
Imposed loads in buildings (EN 1991-1-1)						
A: domestic, residential areas	0.7	0.5	0.3			
B: office areas	0.7	0.5	0.3			
C: congregation areas	0.7	0.7	0.6			
D: shopping areas	0.7	0.7	0.6			
E: storage areas	1.0	0.9	0.8			
F: traffic area, vehicle weight \leq 30kN	0.7	0.7	0.6			
G: traffic area, 30 kN \leq vehicle weight \leq 160kN	0.7	0.5	0.3			
H: roofs	0 [0.7]	0	0			
Wind loads (EN 1991-1-4)						
Wind loads on buildings	0.6 [0.5]	0.2	0			
Values in [brackets], given in BS EN 1990, replace values in EN 1990						

©2005-13 Geocentrix Ltd. All rights reserved

13-14 June, Dublin

Partial factors for buildings

Action		Symbol	Set B	Set C
Permanent	Unfavourable ('superior')	$\gamma_{G,sup}$	1.35	1.0
	Favourable ('inferior')	$\gamma_{ m G,inf}$	1.0	
Variable	Unfavourable	$\gamma_{\mathbf{Q}}$	1.5	1.3
Accidental	Unfavourable	ŶΑ	1	.0
Seismic	Unfavourable	γ_{AE}	1	.0

Worksheet – combination of actions

Calculate these combinations:

- 1. Wind as leading variable action with Set B factors
- 2. As 1, but removable permanent actions missing
- 3. Imposed loads as leading variable action/Set B factors
- 4. As 1, with Set C factors
- 5. As 2, with Set C factors
- 6. As 3, with Set C factors
- 7. As 1, for SLS
- 8. As 2, for SLS
- 9. As 3, for SLS

GEOTECHNICAL DESIGN with worked examples

 European Commission

13-14 June 2013, Dublin

Worked example – combination of actions **SOLUTION**

13-14 June, Dublin

Solution – combination of actions

#	Limit state	Leading variable action	Removed permanent actions?	N _{Ed} (kN)	M _{Ed} (kNm)
1	ULS	Wind	No	2400	2405
2	ULS	Wind	Yes	1631	2405
3	ULS	Imposed	No	2510	1443
4	ULS	Wind	No	1802	2084
5	ULS	Wind	Yes	1631	2084
6	ULS	Imposed	No	1898	1250
7	SLS	Wind	No	1688	0
8	SLS	Wind	Yes	1631	0
9	SLS	Imposed	No	1688	0

©2005-13 Geocentrix Ltd. All rights reserved

GEOTECHNICAL DESIGN with worked examples

13-14 June, Dublin

Summary of key points

Geotechnical engineers need to understand combinations of actions to ensure effective communication with structural engineers

ULS verifications are normally checked with Persistent/Transient (the 'fundamental') combination
SLS verifications are normally checked with Quasi-Permanent (i.e. 'average loading') combination

GEOTECHNICAL DESIGN with worked examples

European Commission

blog.eurocode7.com www.decodingeurocode2.com www.decodingeurocode7.com **DECODING THE EUROCODES**

GEOTECHNICAL DESIGN with worked examples

Geotechnical design with worked examples

European Commission

eurocodes.jrc.ec.europa.eu