GEOTECHNICAL DESIGN with worked examples

13-14 June 2013, Dublin

Basis of design – EN 1990 and EN 1997-1 General Rules

European Commission

Dr Andrew Bond Director, Geocentrix Ltd Chairman TC250/SC7

13-14 June, Dublin

Outline of talk

Overview Design requirements Limit states Actions and design situations Geotechnical design Parameters for design Supervision, monitoring, and maintenance Summary of key points

GEOTECHNICAL DESIGN with worked examples

 European Commission

13-14 June 2013, Dublin

Basis of design – EN 1990 and EN 1997-1 General Rules **OVERVIEW**

The Eurocode family (Bond and Harris, 2008)

EN 1990: Basis of structural design (Bond & Harris, 2008)

¹³⁻¹⁴ June, Dublin

13-14 June, Dublin

EN 1997-1: General rules (Bond & Harris, 2008)

13-14 June, Dublin

Role of Eurocode 7 in UK practice (after Bond & Harris, 2008)

GEOTECHNICAL DESIGN with worked examples

Role of Eurocode 7 in German practice

¹³⁻¹⁴ June, Dublin

GEOTECHNICAL DESIGN with worked examples

Role of Eurocode 7 in French practice

¹³⁻¹⁴ June, Dublin

GEOTECHNICAL DESIGN with worked examples

Role of Eurocode 7 in Italian practice

¹³⁻¹⁴ June, Dublin

GEOTECHNICAL DESIGN with worked examples

Role of Eurocode 7 in Irish practice

13-14 June, Dublin

"Designers' Guide to EN 1997-1" by Frank et al (2004)

Book published 2004

Key features

Detailed guide to new geotechnical design Eurocode Describes and explains many unique features of ground engineering Comprehensive checklists of aspects to be considered in design Authors: Roger Frank, Christophe Bauduin, Richard Driscoll, Mike Kavvadas, Neils Krebs Ovesen, Trevor Orr, and Bernd Schuppener Published by Thomas Telford in hardback ISBN: 07277-3154-8

13-14 June, Dublin

ETC 10 International Workshop in Dublin (2005)

- 10 examples presented
- Pad foundation with vertical central load
- Pad foundation with inclined eccentric load
- Pile foundation designed from soil parameter values
- Pile foundation designed from pile load tests
- Cantilever gravity retaining wall
- Embedded retaining wall
- Anchored retaining wall
- Uplift of deep basement
- Failure by hydraulic heave
- Road embankment on soft clay www.tcd.ie/civileng/pdf/Eurocode 7.pdf

13-14 June, Dublin

"Decoding Eurocode 7" by Bond and Harris (2008)

Book published August 2008

Key features

- Covers ENs 1997-1 and -2
- Plus relevant parts of other Eurocodes
- Also covers associated execution and testing standards
- Explains key principles
- Illustrates application rules with real-life case studies
- Material extensively tested on training courses over 5 years

Authors Andrew Bond (Geocentrix) and Andy Harris (ex-Geomantix) Published by Taylor and Francis in hardback, with colour section ISBN: 9780415409483

www.decodingeurocode 7.com

13-14 June, Dublin

'EC7 for geo. design – a model code for non-EU countries?'

Paper published at 17th Int. Conf. On Soil Mechanics and Geotechnical Engineering, October 2009

Subjects covered

Eurocode 7Geotechnical design'

Applicability of Eurocode 7 Part 1: design examples from the 2005 Dublin Workshop

'Comments of non-European countries

Authors:

B. Schuppener

A.J. Bond

R. Frank

T.L.L. Orrr

- G. Scarpelli
- B. Simpson

<text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text>

code 7 for geotechnical design - a model code for non-EU count

13-14 June, Dublin

Modern geotechnical design codes of practice (2013)

International Workshop on Safety Concepts and Calibration of Partial Factors in European and North American Codes of Practice, Delft University in December 2011

Book includes several papers devoted to Eurocode 7:

Implementation and evolution of Eurocode 7 by Andrew Bond

Implementation of Eurocode 7 in German geotechnical design practice by Kerstin Lesny

Implementation of Eurocode 7 in French practice by means of national additional standards by Jean-Pierre Magnan and Sébastien Burlon

Implementing Eurocode 7 to achieve reliable geotechnical designs by methods of Practice Prevelopment

The safety concept in German design codes by Bernd Schuppener

British choices of geotechnical design approach and partial factors for EC7 by Brian Simpson

Dutch approach to geotechnical design by Eurocode 7, based on prebabate analyses by Ton Vrouwenvelder, Adriaan va Seter, and Geerhard Hand

IOS THE

GEOTECHNICAL DESIGN with worked examples

 European Commission

Basis of design – EN 1990 and EN 1997-1 General Rules **DESIGN REQUIREMENTS**

Eurocode design (Bond & Harris, 2008)

GEOTECHNICAL DESIGN with worked examples

13-14 June, Dublin

Complexity of design

- "In order to establish minimum requirements for the extent and content of geotechnical investigations, calculations and construction control checks, the complexity of each geotechnical design shall be identified together with associated risks" EN 1997-1 §2.1(8)P
- "... a distinction shall be made between light and simple structures and small earthworks for which ... the minimum requirements will be satisfied by experience and qualitative geotechnical investigations, with negligible risk; [and] other geotechnical structures" EN 1997-1 §2.1(8)P continued
- "For structures and earthworks of low geotechnical complexity and risk, such as defined above, simplified design procedures may be applied" EN 1997-1 §2.1(9)

GEOTECHNICAL DESIGN with worked examples

13-14 June, Dublin

Geotechnical categories

GC	Includes	Design requirements	Design procedure	
1	Small and relatively simple structures with negligible risk	Negligible risk of instability or ground movements Ground conditions known to be straightforward No excavation below water table (or such excavation is straightforward)	Routine design & construction methods	
2	Conventional types of structure & foundation <u>with no</u> <u>exceptional risk</u> or difficult soil or loading conditions	Quantitative geotechnical data & analysis to ensure fundamental requirements are satisfied	Routine field & lab testing Routine design & execution	
3	Structures or parts of structures not covered above	Include alternative provisions and rules to those in Eurocode 7		

13-14 June, Dublin

Examples of structures in Geotechnical Categories 2 and 3

GC	Risk	Examples
1	Negligible	None given in Eurocode 7
2	No exceptional	§2.1(19) Spread; raft; & pile foundations; walls & other structures retaining or supporting soil or water; excavations; bridge piers & abutments; embankments & earthworks; ground anchors & other tie-back systems; and tunnels in hard, non- fractured rock and not subjected to special water tightness or other requirements.
3	Exceptional	§2.1(21) Very large or unusual structures; structures involving abnormal risks, or unusual or exceptionally difficult ground or loading conditions; structures in highly seismic areas; and structures in areas of probable site instability or persistent ground movements that require separate investigation or special measures

Example Geotechnical Categories (Bond & Harris, 2008)

GEOTECHNICAL DESIGN with worked examples

 European Commission

13-14 June 2013, Dublin

Basis of design – EN 1990 and EN 1997-1 General Rules ACTIONS AND DESIGN SITUATIONS

13-14 June, Dublin

Design situations from basis of design

Design situations are:

"sets of physical conditions representing the real conditions occurring during a certain time interval for which the design will demonstrate that relevant limit states are not exceeded" EN 1990 §1.5.2.2

Persistent (conditions of normal use) Period = same order as design working life (DWL) of structure Transient (temporary conditions, e.g. execution or repair) Period << DWL and high probability of occurrence Accidental (exceptional conditions) e.g. fire, explosion, impact, local failure Seismic (exceptional conditions during earthquake)

13-14 June, Dublin

Actions according to EN 1990: Basis of design

Action		Duration	Variation w/ time	Examples		
Permanent	G	Likely to act throughout reference period	Negligible or monotonic	Self-weight of structures, fixed equipment and road-surfacing; indirect actions [§] caused by shrinkage and uneven settlements		
Variable	Q		Neither negligible nor monotonic	Imposed loads on building floors, beams and roofs; wind*; snow*		
Accidental	A	Usually short	Significant magnitude	Explosions, vehicle impact*, seismic* (AE, due to earthquake ground motions)		
*may be variable or accidental depending on statistical distribution						
[§] may be permanent or variable						

13-14 June, Dublin

Structural and geotechnical actions (Bond & Harris, 2008)

GEOTECHNICAL DESIGN with worked examples

 European Commission

Basis of design LIMIT STATES

GEOTECHNICAL DESIGN with worked examples

Key design requirement

"For each geotechnical design situation it <u>shall</u> be verified that no relevant limit state ... is exceeded" EN 1997-1 §2.1(1)P

Limit states should be verified by one or a combination of...

Use of calculations Adoption of prescriptive measures Experimental models and load tests An observational method

GEOTECHNICAL DESIGN with worked examples

Design by calculation (Bond & Harris, 2008)

13-14 June, Dublin

Overview of limit state design (Bond & Harris, 2008)

13-14 June, Dublin

Ultimate limit states for strength: STR/GEO (Bond & Harris, 2008)

GEOTECHNICAL DESIGN with worked examples

Verification of strength

Verification of strength is expressed in Eurocode 7 by:

$E_d \leq R_d$

 E_d = design effect of actions; R_d = corresponding design resistance

GEO: 'Failure or excessive deformation of the ground, in which the <u>strength of soil or rock is significant</u> in providing resistance' EN 1997-1 §2.4.7.1(1)P

STR: 'Internal failure or excessive deformation of the structure or structural elements ... in which the <u>strength of structural materials</u> <u>is significant</u> in providing resistance" EN 1997-1 §2.4.7.1(1)P

'Degree of utilization' vs 'overdesign factor'

Bond and Harris (2008) recommend using the ratio of the design effect of actions to the corresponding resistance to verify strength:

$$\Lambda_{GEO} = \frac{E_d}{R_d} \le 100\%$$

 Λ = 'degree of utilization'

Frank et. al. (2004) define the ratio of the design resistance to the corresponding design effect of actions:

$$ODF = \frac{R_d}{E_d} \ge 1.0$$

ODF = 'overdesign factor' = $1/\Lambda$

Verification of strength for STR in structural design (Bond and Harris, 2008)

GEOTECHNICAL DESIGN with worked examples

Verification of strength for STR/GEO in geotechnical design (Bond & Harris, 2008)

¹³⁻¹⁴ June, Dublin

GEOTECHNICAL DESIGN with worked examples

Design Approaches for STR/GEO

"The manner in which equations [for GEO/STR] are applied shall be determined using one of three Design Approaches Design Approaches apply ONLY to STR and GEO limit states Each nation can choose which one (or more) to allow" EN 1997-1 §2.4.7.3.4.1(1)P

GEOTECHNICAL DESIGN with worked examples

13-14 June, Dublin

Design Approaches explained

Design Approach								
1		2	3					
Combination 1	Combination 2							
Actions	Material properties	Actions/effects & resistances	Structural actions/effects & material properties					
<u>A1</u> + M1 + R1	<u>A2</u> + <u>M2</u> + R1	<u>A1</u> + M1 + <u>R2</u>	<u>A1/A2</u> + <u>M2</u> + R3					
(Major) <u>factors</u> >> 1.0; (minor) <u>factors</u> > 1.0 A1-A2 = factors on actions/effects M1-M2 = factors on material properties R1-R3 = factors on resistances								

GEOTECHNICAL DESIGN with worked examples

13-14 June, Dublin

National choice of Design Approach for shallow foundations (Bond, 2013)

National choice of Design Approach for slopes (Bond, 2013)

¹³⁻¹⁴ June, Dublin

13-14 June, Dublin

Partial factors for limit states GEO/STR

Parameter		Sym- bol	Act fa <u>ct</u>	ion tors	Material factors		Resistance factors			
			A1	A2	M1	M2	R1	R2	R3	R4
Permanent	Unfavourable	γ_{G}	1.35	1.0						
action (G)	Favourable	($\gamma_{G,fav}$)	1.0	1.0	_					
Variable	Unfavourable	$\gamma_{\mathbf{Q}}$	1.5	1.3	-					
action (Q)	Favourable	-	(0)	(0)						
Shearing resis	tance (tan φ)	γ_ϕ				1.25				
Effective cohes	sion (c')	γ_{c}								
Undrained she	ar strength (c _u)	γ_{cu}			1 0	1.4				
Unconfined compressive strength (q_u)		γ_{qu}			1.0					
Weight density (_Y)		γ_{γ}				1.0				
Bearing resistance (R_v)		γ_{Rv}						1.4		
Sliding resistance (R _h)		γ_{Rh}					1 0	1.1	1 0	(1 0)
Earth resistand	ce Walls	γ_{Re}					1.0	1.4	1.0	(1.0)
(R _e)	Slopes							1.1		
Pile resistance						-	S	ee separ	ate tab	le
Factors given for persistent and transient design situations										
- -										

Ultimate limit states for stability: EQU/UPL/HYD (Bond & Harris, 2008)

Limit state EQU (EN 1997-1 version)

Ultimate limit state EQU is defined as

"Loss of equilibrium of the structure or the ground considered as a rigid body, in which the strengths of structural materials and the ground <u>are insignificant</u> in providing resistance" EN 1997-1 §2.4.7.1(1)P

Verification of static equilibrium

$$E_{dst;d} \le E_{stb;d} + T_d$$

 $E_{xxx;d}$ = effects of actions (here, overturning moments) Subscripts 'dst' and 'stb' signify de-stabilising and stabilising T_d = total shearing resistance that develops around the part of the structure in contact with the ground

Verification of stability for EQU (Bond & Harris, 2008)

Partial factors for limit state EQU for buildings

Parameter	Symbol	Partial factors on					
			Actions	Material	Resistances		
				properties			
Permanent action (G)	Unfavourable	$\gamma_{G,dst}$	<u>1.1</u>				
	Favourable	$\gamma_{G,stb}$	<u>0.9</u>				
Variable action (Q)	Unfavourable	$\gamma_{Q,dst}$	<u>1.5</u>				
	Favourable	-	0				
Coeff. of shearing resis	tance (tan φ)	γ_{ϕ}					
Effective cohesion (c')		γ _c		1.25 [1.1]			
Undrained shear streng	γ_{cu}		1 4 [1 2]				
Unconfined compressiv	γ _{qu}		<u>1.4 [1.2]</u>				
Weight density (y)	γ_{γ}		1.0				
All resistances (R)		ŶR			(1.0)		
Values <u>underlined</u> provide safety (i.e. are \neq 1.0) Values in (rounds brackets) are not explicitly given in EN 1997-1 but can be inferred Partial factors = 0 mean that the corresponding action is omitted from design calculations Values in [square brackets] from NA to BS EN 1997-1							

13-14 June, Dublin

Serviceability limit states (Bond & Harris, 2008)

GEOTECHNICAL DESIGN with worked examples

Verification of serviceability

Verification of serviceability is expressed in Eurocode 7 by:

 $E_d \leq C_d$

 E_d = design effect of actions (e.g. displacement, distortion) C_d = design constraint (i.e. limiting value of design effect)

"partial factors ... should normally be taken equal to 1.0" EN 1990 §2.4.8(2)

Verification of SLS (Bond & Harris, 2008)

GEOTECHNICAL DESIGN with worked examples

 European

 Commission

Basis of design – EN 1990 and EN 1997-1 General Rules SUPERVISION, MONITORING, AND MAINTENANCE

13-14 June, Dublin

Requirement for supervision, monitoring, and maintenance

To ensure the safety and quality of a structure, the following shall be undertaken, as appropriate: the construction processes and workmanship shall be supervised the performance of the structure shall be monitored during and after construction the structure shall be adequately maintained EN 1997-1 §4.1(1)P

Overview of supervision, monitoring, and maintenance (Bond & Harris, 2008)

GEOTECHNICAL DESIGN with worked examples

 European

 Commission

Basis of design – EN 1990 and EN 1997-1 General Rules SUMMARY OF KEY POINTS

13-14 June, Dublin

Summary of key points

Design requirements: Complexity of design Geotechnical Categories (GC1-3) Geotechnical design by... Prescriptive measures Calculation Observation or testing Limit states Overall stability Ultimate limit states (GEO, STR, EQU, UPL, and HYD) Serviceability limit states

GEOTECHNICAL DESIGN with worked examples

European Commission

blog.eurocode7.com www.decodingeurocode2.com www.decodingeurocode7.com **DECODING THE EUROCODES**

GEOTECHNICAL DESIGN with worked examples

Geotechnical design with worked examples

European Commission

eurocodes.jrc.ec.europa.eu