

Overview of the Evolution of prCEN/TS 19100: Design of glass structures

2020-09-02

Issue 1 Date: 02/09/2020

Copyright © CEN, 2021. Reuse and reproduction of this document is authorised, provided the source is acknowledged as follows: *"reprinted with authorisation of CEN, copyright @CEN, rue de la Science 23, 1040 Brussels, Belgium"*.

Structure of this slide deck

- → General overview of the evolution of prCEN/TS 19100
- → Specific overview of the evolution of prCEN/TS 19100 parts:
 - prCEN/TS 19100-1: Basis of design and materials
 - prCEN/TS 19100-2: Design of out-of-plane loaded glass components
 - prCEN/TS 19100-3: Design of in-plane loaded glass components and their mechanical joints

General overview of the Evolution of prCEN/TS 19100: Design of glass structures

2020-09-02

Issue 1 Date: 02/09/2020

Agenda – Evolution of prCEN/TS 19100

- \rightarrow Key items
- → Scope and content
- → Ease of use

The following slides provide a general overview of the evolution of prCEN/TS 19100. Complementary slides provide greater details for individual Eurocode Parts.

Scope and content, key items

part 1 Principles and Materials	 "Design philosophy" Glass types, strengths and characteristics Interlayers and its features 	
part 2 Design of out- of-plane loaded glass components	 Elements that do not transfer loads from superordinated structure Out-of-plane loading (only) 	
part 3 Design of in- plane-loaded glass components and their mechanical joints	 Elements that also transfer loads from superordinated structure Out-of-plane loading In-plane loading 	

Date: 02/09/2020

Key items

(2) Glass components should be designed for the following limit states as relevant:

- the Serviceability Limit State (SLS) where glass is unfractured,
- the Ultimate Limit State (ULS) where glass is unfractured,
- the Fracture Limit State (FLS) during the event of fracture,
- the Post Fracture Limit State (PFLS) where glass is fractured.

	Limit State Scenario (LSS)			
	LSS-0	LSS-1	LSS-2	LSS-3
Design for the unfractured glass state	SLS	SLS	SLS	SLS
Design for the unfractured glass state	ULS	ULS	ULS	ULS
Design for the glass fracture state (safe glass fracture)		FLS		FLS
Design for the post-fractured state (residual load capacity)			PFLS	PFLS

How ease of use has been considered

- improving the application of drafting rules according to the updated CEN/CENELEC Internal Regulations (with the support of the ad-hoc document N 1250 v 9.1)
- The comprehensibility of the norm was achieved by clear ordering of the parts and paragraphs, elaborating the concept and logic in a clear hierarchy, from large to small.

How ease of use has been considered

- structuring the documents, so that the coverage of the most important and general cases are included in the main part while technical details are covered in annexes
- simple navigation through the documents

How ease of use has been considered

- alternative application rules, as well as the introduction of NDPs, are limited to a necessary minimum
- innovations when introduced (usually following relevant systematic review comments) where based on an appropriate review of recent international literature and international standards and a consolidated state-of-the-art