

Overview of the Evolution of EN1997: Eurocode 7 – Geotechnical Design

November 1st, 2020

Adriaan van Seters, FUGRO, The Netherlands

Copyright © CEN, 2021. Reuse and reproduction of this document is authorised, provided the source is acknowledged as follows: *"reprinted with authorisation of CEN, copyright @CEN, rue de la Science 23, 1040 Brussels, Belgium"*.

Structure of this slide deck

→ General overview of the evolution of EN 1997

- → Specific overview of the evolution of EN 1997
 - Part 1 General rules
 - Part 2 Ground properties
 - Part 3 Geotechnical structures

General overview of the Evolution of EN1997: Eurocode 7 – Geotechnical Design

November 1st 2020

Agenda – Evolution of EN 1997

- \rightarrow Key changes to EN 1997
- → New content included in the scope of EN 1997
- → How ease of use has been enhanced

The following slides provide a general overview of the evolution of EN 1997. Complementary slides provide greater details for individual Eurocode Parts.

Key changes to EN 1997

\rightarrow 1st Generation Eurocode 7 (3 parts)

- 1. EN1990 Basis of design
- EC7 Part 1 Geotechnical rules 2
- 3. EC7 Part 2 – Testing and derivation of parameters

\rightarrow 2nd Generation Eurocode (4 parts)

- EN1990 Basis of design also 1 geotechnical rules!
- 2. EC7 Part 1 – General rules for all structures, safety, characteristic values
- 3 EC7 Part 2 – Geotechnical Parameters and how to derive them from tests
- EC7 Part 3 Rules for specific 4. geotechnical structures, many calculation models in Annex

Issue 1 Date: 01 11 2020

2002

Basis of

2nd generation Eurocodes

2019-10-01

New content included in scope of EN 1997

→ New concepts

- Rock engineering included everywhere (Soil + Rock = Ground!)
- Geotechnical Category is now combination of Complexity of structure (CC) and Ground (GCC)
- Representative value "cautious estimate" <u>and/or</u> "statistical approach
- New Focus for Part 2 "How do I derive a ground property?" Focus change from "Output from Testing" to "Input for Design"
- → Inclusion of New technical developments in Part 3
 - Pile groups, piled rafts
 - Reinforced fill
 - Rock bolts, soil nails
 - Ground Improvement techniques: stone columns, grouting, rigid inclusions
 - Measures for groundwater control

How ease of use has been enhanced

- → Harmonisation of Table of ⁶⁰⁰ Contents between EN 1990 and ⁵⁰⁰ EN 1997 and between various ⁴⁰⁰ structures in Part 3
- → In 2nd generation: 40 % more Geotechnical structures covered:
 - About same No of Pages (550)
 - More specific code writing:

Issue 1

Date: 01 11 2020

- Less clauses (2350 vs 2500)
- Less "May" / "Can" subclauses
- More "Shall" subclauses

1st vs 2nd generation Eurocode 7

7

Overview of the Evolution of EN1997-1: Geotechnical Design – General rules

November 1st 2020

- Agenda Evolution of EN 1997-1: Geotechnical Design – General rules
- → Key changes to EN 1997-1
- → New content included in the scope of EN 1997-1
- → How ease of use has been enhanced

Key changes to EN 1997-1

- New Geotechnical Category: Consequence (CC)-class and Ground Complexity (GCC)
- → Improved Safety concept EN 1990 / EN 1997
- → Representative value determination
- → Groundwater issues design groundwater pressures
- Numerical methods implementation

Ease of Use:

- Table of content matches directly with EN1990
- All common text from Part 2 and 3 is removed to Part 1
- Better navigation between Parts and Clauses

New Geotechnical Category

Geotechnical Category = Consequence Class x Geotechnical Complexity Class

Consequence Class (CC)	Geotechnical Complexity Class (GCC)			
	Lower (GCC1)	Normal (GCC2)	Higher (GCC3)	
High (CC3)			GC3	
Medium (CC2)		GC2		
Low (CC1)	GC1			

Improved Safety Concept EN 1990 / EN 1997

Data: 01 11 2020

- \rightarrow 1st Generation Design Approaches changed to Design Cases
- → Applicable Design Case in part 3 Geotechnical Structures

Action or effect			Partial factors $\gamma_F \& \gamma_E$ for Design Cases 1-4					
Туре	Group	Symbol	Resulting effect	Struct- ural	Static equil upl	ibrium and ift*	Geotechnical design	
				DC1	DC2(a)	DC2(b)	DC3	DC4
Permanent action (G _k)	All	γ _G	unfavourable/ destabilizing	1.35 <i>K</i> _F	1.35 <i>K</i> _F	1.0	1.0	G _k is not
	Water	∕∕G,w		1.2 <i>K</i> _F	1.2 <i>K</i> _F			factor-ed
	All	∕∕G,stb	stabilizing	not used	1.15		not used	
	Water	∕∕G,w,stb			1.0			
	(All)	$\gamma_{\rm G,fav}$	favourable	1.0	1.0		1.0	
Prestress (P _k)		γ _P	See other relevant Eurocodes					
Variable action (Q_k)	All	Na	unfavourable	1.5 <i>K</i> _F	1.5	K _F	1.3	1.1
	Water	ŶQ,₩		1.35 <i>K</i> _F	1.35	5 K _F	1.15	1.0
	(All)	ŶQ,fav	favourable			0		
Effects-of-actions (E)		γ _E	unfavourable	affects are not factored				1.35 <i>K</i> _F
		$\gamma_{\rm E,fav}$	favourable	effects are not factored 1.0			1.0	
*wlesseoutcom	e of (a) and	(b) applies						

12

Representative Value of a Ground property

 \rightarrow Representative value – 2 options:

- Nominal value "cautious estimate"
- Characteristic value 5 % lower bound value Statistics (Informative Annex – Student t-distribution)

Groundwater – New Clause 6 in EN 1997-1

- Groundwater level measurements and groundwater pressures
- \rightarrow Representative value of Groundwater pressure $G_{w:rep}$:
 - Alternative 1: Upper or Lower value Gw;k;sup or Gw;k;inf
 - Alternative 2: Permanent mean Gw;k;mean + Variable Qw;rep with variable Qw;rep = Qw;k ,Qw;comb, Qw;freq or Q w;qper

\rightarrow Design value:

- Direct Assessment (Nominal value)
- Apply an offset to the representative waterpressure
- Apply a partial factor (see EN 1990)

Two verifications: (1) Input Factoring, (2) Factoring Effect of Actions

Other clauses

- \rightarrow 8 Ultimate Limit State
 - ULS in General
 - ULS for specific subjects: Excessive deformation, Hydraulic failure
- → 9 Serviceability Limit State
 - Limiting values for movements in Annex B
- \rightarrow 10 Implementation of Design during execution and service life

\rightarrow 11 – Testing

- Testing for ground properties, design assisted by testing, verification of capacity of a structural member (pile, anchor), quality control, verification of behaviour of the structure.
- → 12 Reporting Geotechnical Design Report (also Annex C)

Overview of the Evolution of EN1997-2: Geotechnical Design - Ground properties

November 1st 2020

- Agenda Evolution of EN 1997-2: Geotechnical Design – Ground properties
- → Key changes to EN 1997-2
- \rightarrow New content included in the scope of EN 1997-2
- → How ease of use has been enhanced

Key changes to EN 1997-2

- Complete reorganisation of EN1997-2
- Focus on DESIGN instead of GROUND INVESTIGATION
- → Calculation models in Old Annexes → PART 3

Ease of Use:

- Table of contents of Clauses 7 12 is similar
- Tables with: parameter, how to obtain it (test codes), confidence
- 1 Table with all guidelines for Ground investigation

19

EN 1997-2 – Ground model

→ In EN 1997-2:

- GROUND MODEL site specific outline of disposition and character of ground and groundwater based on ground Investigation
- → In EN 1997-1 and EN 1997-3:
 - GEOTECHNICAL DESIGN MODEL conceptual representation of the site derived from the Ground Model for verification of limit state

Second generation of Eurocode 7

→ Reporting of Ground Model in Clause 13 and Annex G

Issue 1 Date: 01.11.2020

2019-10-01

EN 1997 – 2 - Minimum number and maximum spacing of Ground Investigation (NDP)

Recommendations for Ground Investigation (part of Table 5.4,NDP)

 Table 5.4(NDP). Maximum spacing and minimum number of in-situ testing locations for structures in Geotechnical Category 2

Structures		Maximum spacing X _{max}	Minimum number ^a N _{min}	
Low-rise structures		30 m	3	
High-rise structures	4-10 storeys	25 m	3- <u>4</u> ^b	
	11-20 storeys	20 m	3- <u>5</u> ^b	
	>20 storeys	15 m	3- <u>6</u> ^b	
Estate roads, parking areas and pavements		40 m	2	
Silos and tanks		15 m	3	
Bridges piers and abutments		1 per pier/base		
Power lines		1 per pylon		
Wind turbines		2 per turbine		
Retaining structures		150 m	-	
Slopes and cuttings	< 3 m high	100 m	-	
	\geq 3 m high	50 m	-	
Embankments and reinforced fill structures	< 3 m high	200 m	-	
	\geq 3 m high	100 m	-	
Excavations in urban areas > 5 m deep from gro	ound surface	25 m	3	

^a Where no spacing or number of locations is given this should be assessed on a project-specific basis.

^b Underlined numbers are more appropriate for difficult structures

EN 1997 – 2 – How to derive Ground properties

→ Methodes for deriving Ground Properties:

- Physical, chemical and state properties (Clause 7)
- Strength properties(Clause 8, Annex D)
- Stiffness and consolidation properties (Clause 9, Annex E)
- Cyclic, Dynamic and Seismic properties (Clause 10, Annex F)
- Groundwater and geohydraulic properties (Clause 11)
- Thermal properties (Clause 12)
- \rightarrow All these Clauses have same table of content:
 - Direct determination directly from test results
 - Indirect determination through correlations

ROCK is included!

EN 1997 – 2 – ANNEX A – Suitability of test methods - ANNEX B - Desk Study and Inspection

- → Annex A (informative):
 - Guidance on type of investigation is needed for a particular project type
 - Confidence levels for suitability of a certain test for a specific parameter
- → Annex B (informative):
 - Guidance on subjects for desk study and site inspection

Overview of the Evolution of EN1997-3: Geotechnical Design - Geotechnical structures

November 1st 2020

Agenda – Evolution of EN 1997-3: Geotechnical Design – Geotechnical Structures

- \rightarrow Key changes to EN 1997-3
- \rightarrow New content included in the scope of EN 1997-3
- → How ease of use has been enhanced

Key changes to EN 1997-3

- → Rock engineering included in all Geotechnical Structures
- → New Structures:
 - Pile groups and pile rafts (Clause 6)
 - Reinforced fill structures (Clause 9)
 - Ground reinforcing elements (Soil nails and rock bolts, Clause 10)
 - Ground Improvement (Clause 11)
 - Ground water control (Clause 12)

Ease of Use:

- Table of contents of all Clauses of Part 3 is same
- All common text from Clauses of Part 3 is removed to Part 1
- Partial factors per Clause in one table, similar for each structure
- Better navigation between Parts and Clauses

EN1997-3 – Clause 4 – Slopes, cuttings, embankments

- \rightarrow Slopes in Soil and Rock
- → Ultimate Limit State:
 - Material Factoring Approach, partial factor on the friction properties of the ground material

(Harmonisation – 1 method)

- Evaluation of Calculation methods in Annex A.
- → Clause 4 is basis for other structures:
 - Rock bolts and soil nails
 - Reinforced fill
 - Spread foundations on slopes

EN 1997-3 – Clause 5 – Spread Foundations

- → Analytical models
- → Ultimate Limit State:
 - Material Factoring Approach, partial factor on friction
 - Resistance Factoring, partial factor on the bearing resistance
- → Serviceability Limits
 - Settlement Analysis
- → Informative Annex B:
 - Bearing capacity and Settlements

2019-10-01

EN 1997-3 – Clause 6 – Piled Foundations (1)

\rightarrow Pile classification system (Examples in Annex) \rightarrow Partial Factors

Pile type	Description	Class	
Displacement pile	Pile installed in the ground without	Full displacement	
	excavation of material	Partial displacement	
Replacement pile	Pile installed in the ground after the excavation of material	Replacement	
Pile not listed above		Unclassified	

- → Axial loading single piles; only Resistance Factoring (RFA)
- → Transverse loading: only Material Factoring (MFA)
- → Ground model method (averaging ground parameters over site)
- → Model pile method (averaging calculated capacities over site)
- Correlation factors (depend on number of load tests/ground investigation and variation of results)

2019-10-01

- Pile bearing resistance verification by:
 - Static load tests
 - Rapid Load test
 - Dynamic Impact tests (calibrated, comparable experience)
 - Wave Equation Analysis (restricted)
 - Pile Driving Formulae (restricted)
- Model factors are given for various methods.

EN 1997-3 – Clause 6 – Piled Foundations (3)

- \rightarrow Pile groups and piled rafts
- → ULS verification:
 - Axially loaded: MFA and RFA
 - Transverse loads: MFA

Annex: models for group bearing capacity – tension/compression
 Annex: model for negative shaft friction

EN1997 – 3 - Clause 7 – Retaining structures

- Analytical (spring) and continuum models
- Maximum active and passive pressures
- → Many failure mechanisms
- → Material factoring MFA or:
- Resistance factoring RFA (Effect of actions)
- → Observational Method!

2019-10-01

EN 1997 – 3 – Clause 8 - Anchors

- \rightarrow Anchors with free length
- Design Based on testing or comparable experience
- \rightarrow 3 Types of tests:
 - Investigation test (failure)
 - Suitability test (on anchor in project)
 - Acceptance test (control test)
- → Resistance factoring in design
- → ULS-verification by testing!
- → Steel strength → EN1993-5

EN 1997 – 3 – Clause 9 – Reinforced Fill

→ Reinforced Fill

- Reinforced fill
- Embankment bases
- Overbridging systems
- Veneer stability

\rightarrow Failure modes (RFA):

- Rupture of reinforcement
- Failure along fill/reinforcement interface
- Failure of connections

Issue 1 Date: 01.11.2020

2019-10-01

EN 1997 – 3 – Clause 10 – Reinforcing elements

- \rightarrow Clause 10 includes:
 - rock bolts
 - soil nails (see figure)
 - sprayed concrete
 - wire mesh
 - facing elements.
- → ULS Resistance factoring

EN 1997-3 – Clause 11 – Ground Improvement

→ Diffused methods:

- compaction
- replacement
- grouting
- deep mixing (figure)

→ Discrete methods:

- stone/sand columns (figure)
- jetgrouting
- deep mixing
- steel/concrete columns

EN 1997 - 3 – Clause 12 – Groundwater control

→ Groundwater control:

- Grouting
- Drainage systems and pumping
- Vertical barriers

→ For hydraulic conductivity check: Serviceability Limit State governs!

Permeation Grouting

(a) Permeation grouting in rocks

(b) Permeation grouting in soils

Thank you

hair-ec7@fugro.com

Adriaan van Seters Fugro NL Land BV The Netherlands

> Issue 1 Date: 01.11.2020

Photo: Frank Jansen (2018)