

Eurocode 8 General rules and seismic actions

E C Carvalho, Chairman TC250/SC8

Workshop - 27-29 November 2006, Varese, Italy

Eurocode 8 - Design of structures for earthquake resistance

- EN1998-1: General rules, seismic actions and rules for buildings
- EN1998-2: Bridges
- EN1998-3: Assesment and retrofitting of buildings
- EN1998-4: Silos, tanks and pipelines
- EN1998-5: Foundations, retaining structures and geotechnical aspects
- EN1998-6: Towers, masts and chimneys

All parts published by CEN (2004-2006)

Building the Future

EUROCODES

EN1998-1: General rules, seismic actions and rules for buildings

EN1998-1 to be applied in combination with other Eurocodes

EUROPEAN STANDARD

NORME EUROPÉENNE

EUROPÄISCHE NORM

ICS 91.120.25

Supersedes ENV 1998-1-1:1994, ENV 1998-1-2:1994, ENV 1998-1-3:1995

English version

Eurocode 8: Design of structures for earthquake resistance -Part 1: General rules, seismic actions and rules for buildings

Eurocode 8: Calcul des structures pour leur résistance aux séismes - Partie 1: Règles générales, actions sismiques et règles pour les bâtiments Eurocode 8: Auslegung von Bauwerken gegen Erdbeben -Teil 1: Grundlagen, Erdbebeneinwirkungen und Regeln für Hochbauten

This European Standard was approved by CEN on 23 April 2004.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stputate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on applicable on to the Central Secretiana to to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the Central Secretariat has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Leotand, Ireland, Italy, LaMa, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.

Management Centre: rue de Stassart, 36 B-1050 Brussels

© 2004 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members. Ref. No. EN 1998-1:2004: E

December 2004

EN1998-1: General rules, seismic actions and rules for buildings

General

Building the Future

- Performance requirements and compliance criteria
- Ground conditions and seismic action
- Design of buildings
- Specific rules for:

Concrete buildings Steel buildings Composite Steel-Concrete buildings Timber buildings Masonry buildings

Base isolation

Objectives

In the event of earthquakes:

Human lives are protected

Damage is limited

Structures important for civil protection remain operational

Special structures – Nuclear Power Plants, Offshore structures, Large Dams – **outside the scope** of EN 1998

Fundamental requirements No-collapse requirement:

Withstand the design seismic action without local or global collapse

Retain structural integrity and residual load bearing capacity after the event

For ordinary structures this requirement should be met for a **reference seismic action** with 10 % probability of exceedance in 50 years (recommended value) i.e. with **475 years Return Period**

Fundamental requirements Damage limitation requirement:

Withstand a more frequent seismic action without damage

Avoid limitations of use with high costs

For ordinary structures this requirement should be met for a **seismic action** with 10 % probability of exceedance in 10 years (recommended value) i.e. with **95 years Return Period**

Reliability differentiation

Target reliability of requirement depending on consequences of failure

Classify the structures into importance classes

Assign a higher or lower return period to the design seismic action

In operational terms multiply the reference seismic action by the importance factor $\gamma_{\rm I}$

Importance classes for buildings

EN 1998-1:2004 (E)

Table 4.3 Importance classes for buildings

Importance class	Buildings
Ι	Buildings of minor importance for public safety, e.g. agricultural buildings, etc.
II	Ordinary buildings, not belonging in the other categories.
III	Buildings whose seismic resistance is of importance in view of the consequences associated with a collapse, e.g. schools, assembly halls, cultural institutions etc.
IV	Buildings whose integrity during earthquakes is of vital importance for civil protection, e.g. hospitals, fire stations, power plants, etc.

NOTE Importance classes I, II and III or IV correspond roughly to consequences classes CC1, CC2 and CC3, respectively, defined in EN 1990:2002, Annex B.

Importance factors for buildings (recommended values): $\gamma_{I} = 0.8; 1.0; 1.2 \text{ and } 1.4$

Fundamental requirements Compliance criteria (design verifications): Ultimate limit state Resistance and Energy dissipation capacity Ductility classes and Behaviour factor values Overturning and sliding stability check Resistance of foundation elements and soil Second order effects Non detrimental effect of non structural elements

Simplified checks for **low seismicity** cases ($a_g < 0,08$ g) No application of EN 1998 for **very low seismicity** cases ($a_g < 0,04$ g)

Fundamental requirements

Compliance criteria (design verifications):

Damage limitation state

Deformation limits (Maximum interstorey drift due to the "frequent" earthquake):

- 0,5 % for brittle non structural elements attached to the structure
- 0,75 % for ductile non structural elements attached to the structure
- 1,0 % for non structural elements **not interfering** with the structure

Sufficient stiffness of the structure for the operationality of vital services and equipment

DLS may control the design in many cases

Fundamental requirements Compliance criteria (design verifications): Specific measures

Simple and regular forms (plan and elevation)

Control the hierarchy of resistances and sequence of failure modes (capacity design)

Avoid brittle failures

Control the behaviour of critical regions (detailing) Use adequate structural model (soil deformability and non strutural elements if appropriate)

In zones of high seismicity formal Quality Plan for Design, Construction and Use is recommended

Ground conditions

Five ground types:

- A Rock
- **B** Very dense sand or gravel or very stiff clay
- **C** Dense sand or gravel or stiff clay
- D Loose to medium cohesionless soil or soft to firm cohesive soil
- E Surface alluvium layer C or D, 5 to 20 m thick, over a much stiffer material
- **2 special ground types S_1 and S_2** requiring special studies

Ground conditions defined by **shear wave velocities** in the **top 30 m** and also by indicative values for N_{SPT} and c_u

Ground conditions

Ground type	Description of stratigraphic profile	Parameters		
		v _{s,30} (m/s)	N _{SPT} (blows/30cm)	c _u (kPa)
А	Rock or other rock-like geological formation, including at most 5 m of weaker material at the surface.	> 800	_	_
В	Deposits of very dense sand, gravel, or very stiff clay, at least several tens of metres in thickness, characterised by a gradual increase of mechanical properties with depth.	360 - 800	> 50	> 250
С	Deep deposits of dense or medium- dense sand, gravel or stiff clay with thickness from several tens to many hundreds of metres.	180 - 360	15 - 50	70 - 250
D	Deposits of loose-to-medium cohesionless soil (with or without some soft cohesive layers), or of predominantly soft-to-firm cohesive soil.	< 180	< 15	< 70
Е	A soil profile consisting of a surface alluvium layer with v_s values of type C or D and thickness varying between about 5 m and 20 m, underlain by stiffer material with $v_s > 800$ m/s.			
<i>S</i> ₁	Deposits consisting, or containing a layer at least 10 m thick, of soft clays/silts with a high plasticity index (PI > 40) and high water content	< 100 (indicative)	-	10 - 20
<i>S</i> ₂	Deposits of liquefiable soils, of sensitive clays, or any other soil profile not included in types $A - E$ or S_1			

- **Competence of National Authorities**
 - Described by a_{gR} (reference peak ground acceleration on type A ground)
 - Corresponds to the reference return period $T_{\rm NCR}$
 - Modified by the Importance Factor γ_{I} to become the design ground acceleration (on type A ground) $a_{g} = a_{gR} \cdot \gamma_{I}$

Objective for the future updating of EN1998-1: European zonation map with spectral values for different hazard levels (e.g. 100, 500 and 2.500 years)

Workshop - 27-29 November 2006, Varese, Italy

Basic representation of the seismic action Elastic response spectrum Common shape for the ULS and DLS verifications 2 orthogonal independent horizontal components

- Vertical spectrum shape different from the horizontal spectrum (common for all ground types)
- Possible use of more than one spectral shape (to model different seismo-genetic mechanisms)

Account of **topographical effects** (EN 1998-5) and **spatial variation** of motion (EN1998-2) required in some special cases

Definition of t	he horizontal elastic response spectrun
	(four branches)
$0 \leq T \leq T_{\rm B}$	$S_{e}(T) = a_{g} \cdot S \cdot (1 + T/T_{B} \cdot (\eta \cdot 2, 5 \cdot 1))$
$T_{\rm B} \leq T \leq T_{\rm C}$	$S_{\rm e}(T) = a_{\rm g} \cdot S \cdot \eta \cdot 2,5$
$T_{\rm C} \leq T \leq T_{\rm D}$	$S_{\rm e}(T) = a_{\rm g} \cdot S \cdot \eta \cdot 2,5 (T_{\rm C}/T)$
$T_{\rm D} \leq T \leq 4 {\rm s}$	$S_{\rm e}(T) = a_{\rm g} \cdot S \cdot \eta \cdot 2,5 (T_{\rm C} \cdot T_{\rm D} / T^2)$
$S_{e}(T)$	elastic response spectrum
ag	design ground acceleration on type A ground
$T_{\rm B} T_{\rm C} T_{\rm D}$	corner periods in the spectrum (NDPs)
S	soil factor (NDP)
η	damping correction factor ($\eta = 1$ for 5% damping)

Additional **information** for T > 4 s in Informative Annex

Normalised elastic response spectrum (standard shape)

Control variables

• S, T_B, T_C, T_D (NDPs) • η (\geq 0,55) damping correction for $\xi \neq$ 5 %

Fixed variables

- Constant acceleration, velocity & displacement spectral branches
- acceleration spectral amplification: 2,5

Different spectral shape for **vertical spectrum** (spectral amplification: **3,0**)

Elastic response spectrum

Two types of (recommended) spectral shapes

Depending on the characteristics of the most significant earthquake contributing to the local hazard:

- Type 1 High and moderate seismicity regions
 (M_s > 5,5)
- Type 2 Low seismicity regions ($M_s \le 5,5$); near field earthquakes

Optional account of **deep geology effects** (NDP) for the definition of the seismic action

Recommended elastic response spectra

Type 1 - M_{\rm s} > 5,5

Type 2 - $M_{\rm s} \le 5,5$

Design spectru	<u>Im</u> for elastic response analysis
(derived fro	om the elastic spectrum)
$0 \leq T \leq T_{\rm B}$	$S_{\rm d}(T) = a_{\rm g} \cdot S \cdot (2/3 + T/T_{\rm B} \cdot (2, 5/q - 2/3))$
$T_{\rm B} \leq T \leq T_{\rm C}$	$S_{\rm d}(T) = a_{\rm g} \cdot S \cdot 2,5/q$
$T_{\rm C} \leq T \leq T_{\rm D}$	$S_{\rm d}(T) = a_{\rm g} \cdot S \cdot 2,5/q \cdot (T_{\rm C}/T)$
	$\geq \beta \cdot a_{\mathrm{g}}$
$T_{\rm D} \leq T \leq 4 {\rm s}$	$S_{\rm d}(T) = a_{\rm g} \cdot S \cdot 2,5/q \cdot (T_{\rm C} \cdot T_{\rm D}/T^2)$
	$\geq \beta . a_{\rm g}$
$S_{\mathbf{d}}(T)$ design	n spectrum
a bobov	iour factor

- q behaviour factor
- β lower bound factor (NDP recommended value: 0,2)

Specific rules for vertical action: $a_{vg} = 0.9 \cdot a_g$ or $a_{vg} = 0.45 \cdot a_g$; S = 1.0; $q \le 1.5$

Alternative representations of the seismic action

- **Time history representation** (essentially for NL analysis purposes)
 - Three simultaneously acting accelerograms
 - Artificial accelerograms
 - Match the elastic response spectrum for 5% damping Duration compatible with Magnitude ($T_s \ge 10 \text{ s}$) Minimum number of accelerograms: 3
 - <u>Recorded</u> or <u>simulated</u> accelerograms Scaled to a_g . *S* Match the elastic response spectrum for 5% damping