

**B.** Kolias



### **Basic Requirements**

#### o Non-Collapse

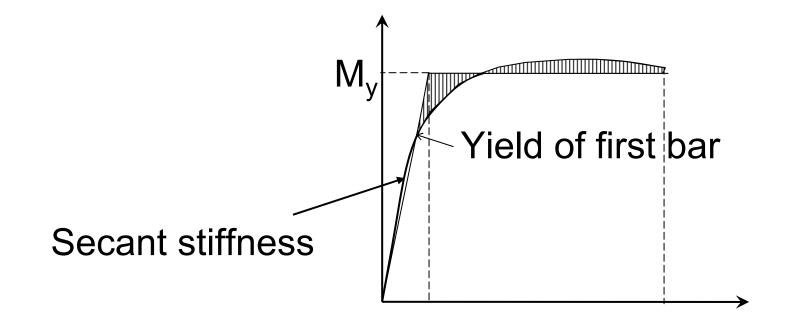
- Retain structural strength + residual resistance for emergency traffic.
- Limit damage to areas of energy dissipation.
- Damage Minimization
  - Under probable seismic effects.



## Analysis Methods

#### • Equivalent Linear Analysis:

 Elastic force analysis (response spectrum) forces from unlimited elastic response divided by q = behaviour factor.


#### design spectrum = elastic spectrum / q

### **Analysis Methods**

#### • Stiffness of Ductile Elements:

 $\bullet \bullet \bullet$ 

secant stiffness at the theoretical yield



### **Analysis Methods**

#### • Non-linear Dynamic Time-History Analysis:

- In combination with response spectrum analysis without relaxation of demands.
- For irregular bridges.
- For bridges with seismic isolation.

#### • Non-linear Static Analysis (Push-Over):

• For irregular bridges.



#### • Limited Ductile Behaviour: q < 1.50

#### • Ductile Behaviour: $1.50 < q \le 3.50$

### Compliance Criteria for Elastic Analysis

#### • Limited Ductile Behaviour:

- Section verification with seismic design effects
   A<sub>Ed</sub>
- Verification of non-ductile failure modes (shear and soil) with elastic effects  $qA_{Ed}$  and reduction of resistance by  $\gamma_{Bd}$  = 1.25

### Compliance Criteria for Elastic Analysis

#### • Ductile Behaviour:

- Flexural resistance of plastic hinge regions with design seismic effects A<sub>Ed</sub>.
- All other regions and non-ductile failure modes (shear of elements & joints and soil) with capacity design effects A<sub>C</sub>.
- Local ductility ensured by special detailing rules (mainly confinement).

• Control of Displacements:

Assessment of seismic displacement d<sub>E</sub>

 $d_E = \eta \mu_d d_{Ee}$ .

 $d_{Ee}$  = result of elastic analysis.

 $\eta$  = damping correction factor.

 $\mu_d$  = displacement ductility as follows:

when  $T \ge T_0 = 1.25T_C$ :  $\mu_d = q$ when  $T < T_0$ :  $\mu_d = (q-1)T_0 / T + 1 \le 5q - 4$ 

## • • • Compliance Criteria for Elastic Analysis

#### • Provision of adequate clearances for the total seismic design displacement:

$$d_{Ed} = d_E + d_G + 0.5d_T$$

 $d_{G}$  due to permanent and quasi-permanent actions.

 $d_{\tau}$  due to thermal actions.

o For roadway joints: 40% d<sub>F</sub> and 50% d<sub>T</sub>



Chord rotation:  $\theta = \theta_v + \theta_p$ 



#### • Ductile Members:

○ Plastic chord rotations of plastic hinges:
 demand ≤ design capacity

$$\theta_{p,E} \le \theta_{p,d}$$
,  $\theta_{p,d} = \theta_{p,u} / \gamma_{R,p}$ ,  $\gamma_{R,p} = 1.40$ 

 $\theta_{p,u}$  = probable (mean) capacity from tests or derived from ultimate curvatures

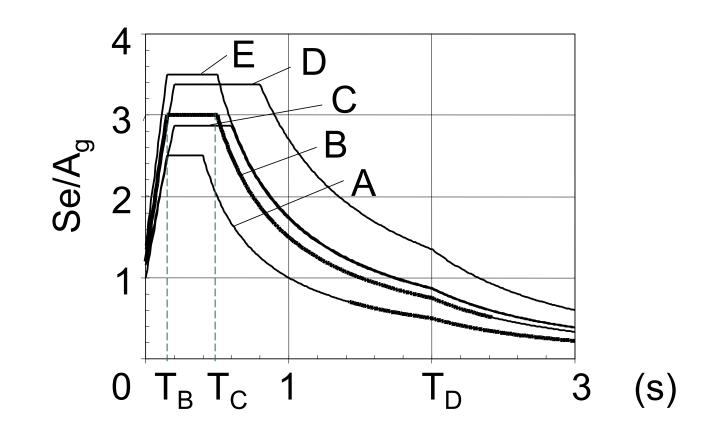
### • • • Compliance Criteria for Non-linear Analysis

#### • Non-ductile members:

 Force verification as in elastic analysis for regions outside plastic hinges and non-ductile failure modes, with capacity design effects replaced by:

 $\gamma_{R,Bd1} A_{Ed}$  with  $\gamma_{R,Bd1} = 1.25$ • Design resistances:

$$R_d = R_k / \gamma_M$$


### **Seismic Action**

- Two types of elastic response spectra:
  - Type 1 and 2.
- 5 types of soil:
  - A, B, C, D, E.
- 4 period ranges:
  - short, constant acceleration, velocity and displacement.
- Design spectrum = elastic spectrum / *q*.
- 3 importance classes:
  - γ<sub>I</sub> = 1.3, 1.0, 0.85.



### **Seismic Action**

Elastic Spectrum Type 1 ( $\xi$  = 0.05)



Spatial variability model should account for:

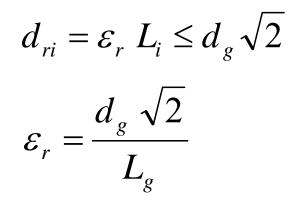
- Propagation of seismic waves
- Loss of correlation due to reflections/refractions
- Modification of frequency content due to diff mechanical properties of foundation soil

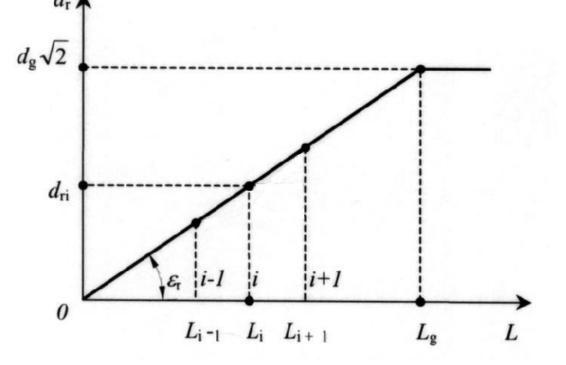
o Rigorous model in Inf. Annex D:o Simplified method:

⇒ Uniform support excitation + pseudostatic effects of two sets of displacement (A and B) imposed at supports.

⇒ Sets A and B applied in the two principal horizontal directions but considered independently

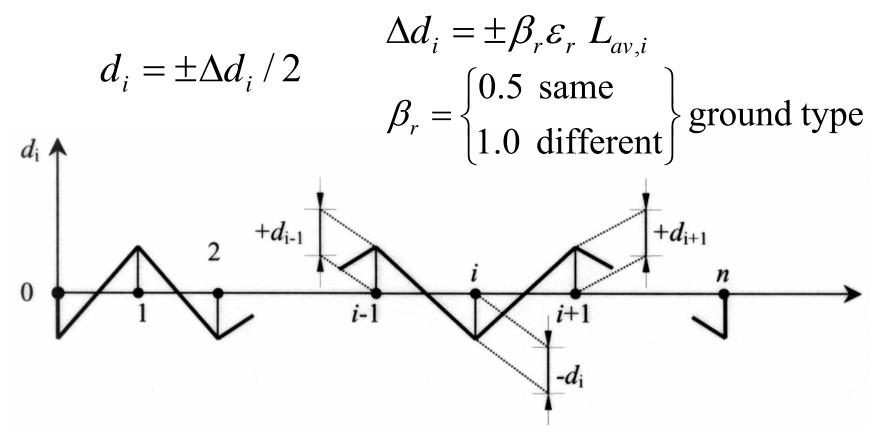
#### **Displacement sets defined from:**


- d<sub>g</sub> = 0.025 a<sub>g</sub>ST<sub>c</sub>T<sub>D</sub> : max particle displ.
   corresponding to the ground type (EC8-1)
- L<sub>g</sub> is the distance beyond which seismic motion is completely uncorrelated


#### **Recommended Values of L<sub>q</sub>(m)**

| Ground<br>Type     | А   | В   | С   | D   | E   |
|--------------------|-----|-----|-----|-----|-----|
| L <sub>g</sub> (m) | 600 | 500 | 400 | 300 | 500 |

Displacement set A uniform expansion/contraction


displacement of
 support i relative
 to support 0





#### **Displacement set B**

with opposite directions at adjacent piers



## Regular / Irregular Bridges

• Criterion based on final required force reduction factors  $r_i$  of the ductile members i:

$$r_i = qM_{Ed,i}/M_{Rd,i} =$$

#### *q* x Seismic moment / Section resistance

• A bridge is considered regular when the "irregularity" index:

$$\rho_{ir} = max(r_i) / min(r_i) \leq \rho_0 = 2$$

• Piers contributing less than 20% are excepted.

## Regular / Irregular Bridges

- For regular bridges equivalent elastic analysis is allowed with the *q*-values specified, without checking of local ductility demands
- Irregular bridges are:
  - either designed with reduced behaviour factor:

$$q_r = q \rho_{ir} / \rho_o \ge 1.0$$

 or verified by non-linear static (pushover) or dynamic analysis

## Capacity Design Effects

 Correspond to the section forces under permanent loads and a seismic action creating the assumed pattern of plastic hinges, where the flexural overstrength:

 $M_o = \gamma_o M_{Rd}$ 

has developed with:  $\gamma_o = 1.35$ 

• Simplifications satisfying the equilibrium conditions are allowed.



#### **Confinement reinforcement**

• Increasing with:

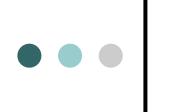
- Normalised axial force:  $\eta_k = N_{Ed} / (A_c f_{ck})$ .
- Axial reinforcement ratio  $\rho$  (for  $\rho > 0.01$ ).
- Not required for hollow sections with:

•  $\eta_k \leq 0.20$  and restrained reinforcement.

 Rectangular hoops and crossties or Circular hoops or spirals



#### Restraining of axial reinforcement against buckling


o max support spacing:

$$s_{L} \leq \delta \emptyset_{L}$$

$$5 \leq \delta = 2,5 (f_{t} / f_{y}) + 2,25 \leq 6$$

• minimum amount of transverse ties:

 $A_t/s_T = \Sigma A_s f_{ys}/1,6f_{yt} \text{ (mm<sup>2</sup>/m)}$ 



#### • Hollow piers

- In the region of the plastic hinges
   *b* / *t* or *D* / *t* ≤ 8
- Pile foundations
  - Rules for the location and required confinement of probable plastic hinges



- Bearings and seismic links.
- Holding down devices.
- Shock transmission units (STU).
- Min. overlap lengths at movable supports.
- Abutments and retaining walls.
- Culverts with large overburden.



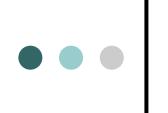
- The isolating system arranged over the isolation interface reduces the seismic response by:
  - either lengthening of the fundamental period.
  - or increasing of the damping.
  - or (preferably) by combination of both effects.

#### **Design properties of the isolating system**

- Nominal design properties (NDP) assessed by prototype tests, confirming the range accepted by the Designer.
- Design is required for:
  - Upper Bound design properties (UBDP).
  - Lower Bound design properties (LBDP).
- Bounds of Design Properties result either from tests or from modification factors.



#### Analysis methods


- Fundamental or multi mode spectrum analysis (subject to specific conditions).
- Non-linear time-history analysis.

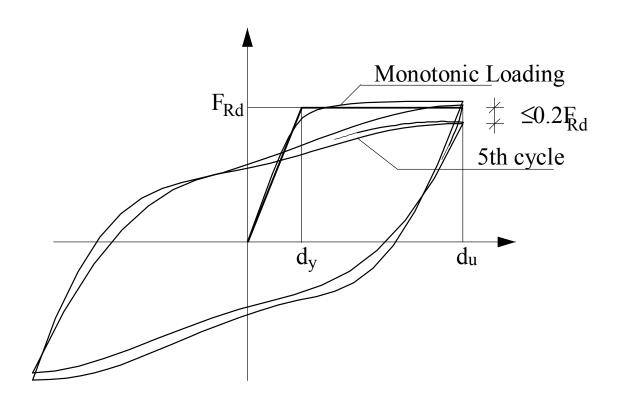


#### **Compliance criteria**

- Isolating system
  - Displacements increased by factor:

- Restoring capability is required for the system.
- Sufficient lateral rigidity under service conditions is required.




#### <u>Substructure</u>

#### • Design for limited ductile behaviour: $q \leq 1.50$



### Seismic Deformation Capacity of Piers

#### **Ultimate Displacement**



## Deformation Capacity of Piers

Chord rotation  $\theta_u = \theta_y + \theta_p$ Plastic chord rotation  $\theta_p$  derived • Directly from appropriate tests • From the curvature, by integration

## Deformation Capacity of Piers

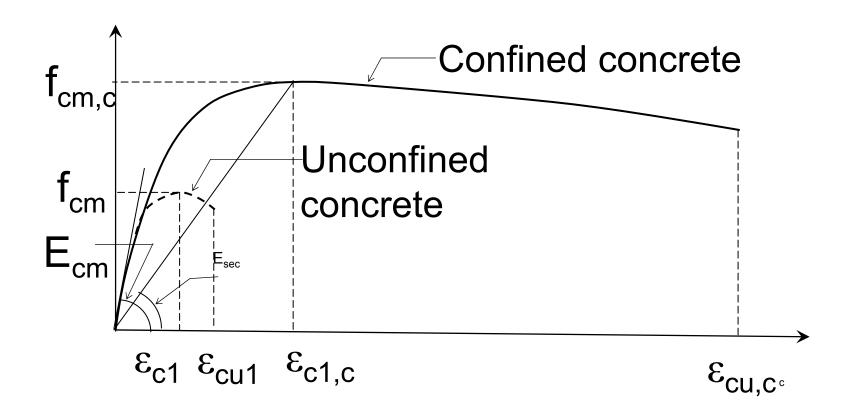
o Ultimate curvature:

$$\Phi_{u} = \frac{\varepsilon_{su} - \varepsilon_{cu}}{d}$$

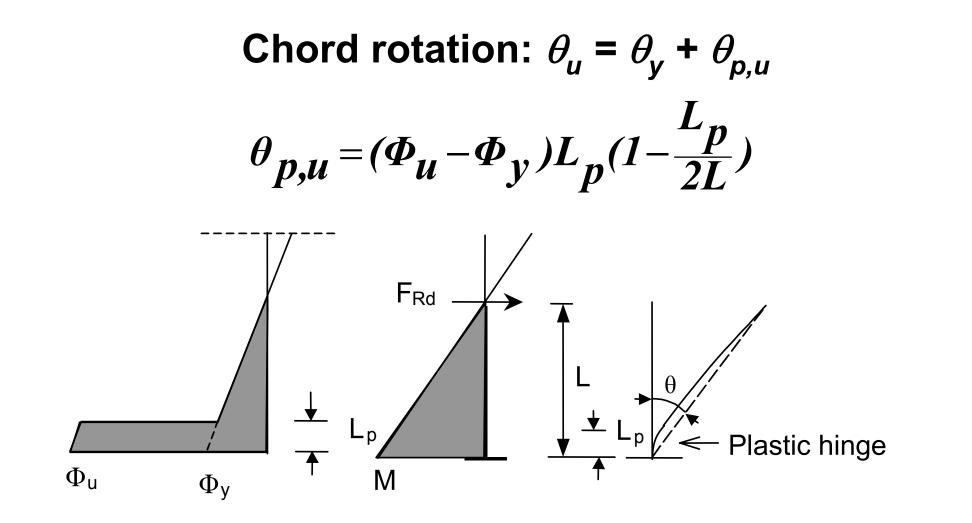
- Reinforcement:  $\epsilon_{su} = 0.075$  (EN1992-1-1)
- Unconfined concrete:  $\epsilon_{cu}$ = -0.035 (EN1992-1-1)

Confined concrete:

$$\varepsilon_{cu,c} = -0.004 - \frac{1.4\rho_s f_{ym}\varepsilon_{su}}{f_{cm,c}}$$


## Deformation Capacity of Piers

### • Mean material properties Reinforcement • $f_{vm}/f_{vk} = 1.15$ , $f_{sm}/f_{sk} = 1.20$ , $\varepsilon_{su} = \varepsilon_{uk}$ Concrete • $f_{cm} = f_{ck} + 8 \ (MPa), E_{cm} = 22(f_{cm}/10)^{0.3}$ Stress-strain diagram of concrete


•Unconfined concrete:  $\varepsilon_{c1} = -0.0007 f_{cm}^{0.31}$ 

### Deformation Capacity of Piers

#### **Confined concrete - Mander model**




### Deformation Capacity of Piers

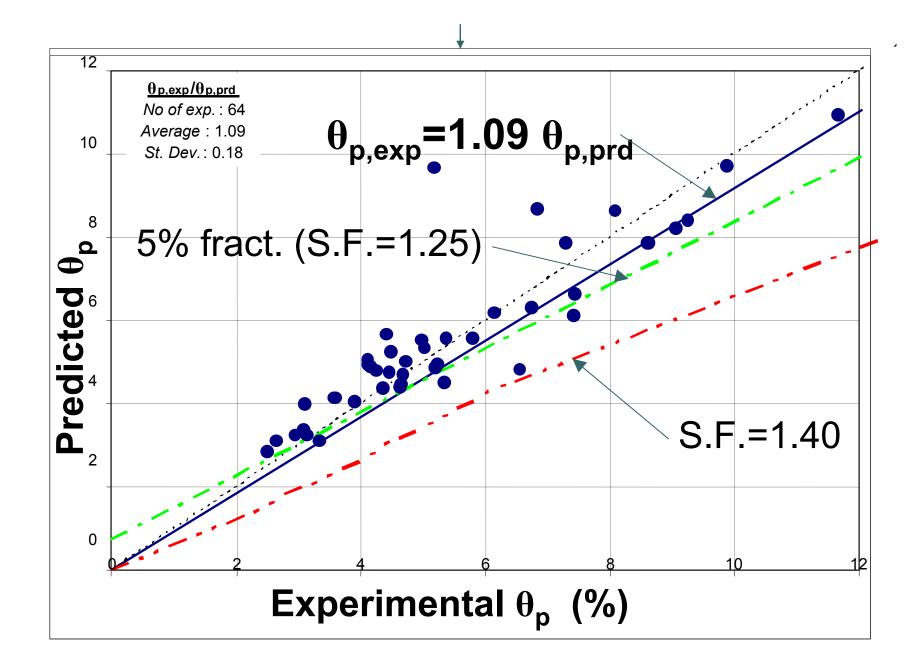




### Deformation Capacity of Piers

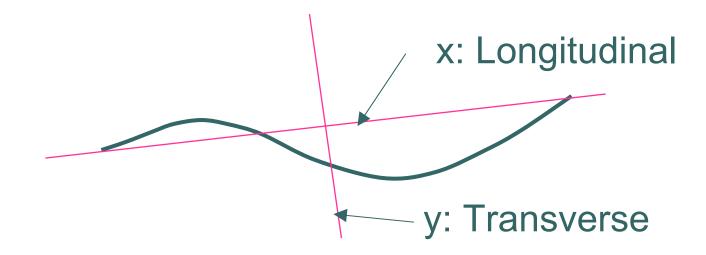


### Deformation Capacity of Piers


#### **Calibration with test results**

• Database:

• 64 tests on R/C pier elements.


- 31 circular, 25 rectangular, 8 box sections
- Curvature analysis for each test specimen.
- Non-linear regression for the coefficients of:

$$L_p = 0.10L + 0.015f_{yk}d_s$$



## Non-linear Static Analysis

Based on the equal displacements rule
Analysis directions



## Non-linear Static Analysis

Horizontal load increased until the displacement at the reference point reaches the design seismic displacement of elastic response spectrum analysis (q = 1), for Ex + 0.3Ey and Ey + 0.3Ex

 Reference point is the centre of mass of the deformed deck

## Non-linear Static Analysis

#### Load distribution

Load increment at point *i* at step *j* 

$$\Delta F_{i,j} = \Delta \alpha_j G_i \zeta_i$$

> distribution constant along the deck:  $\zeta_i = 1$ 

> distribution proportional to first mode shape

# Thank you !!!