

Pre-normative research in support of Eurocode 8: The JRC contribution

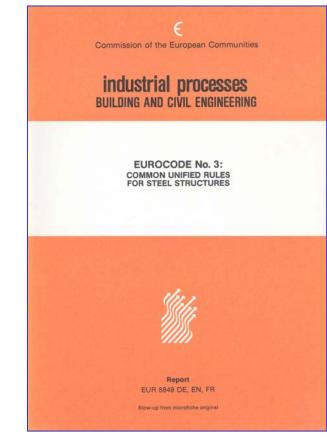
Artur Pinto, Paolo Negro, Fabio Taucer

(Credits: European Partners involved in joint projects with JRC; ELSA Laboratory staff)

Construction & Earthquake Engineering European Laboratory for Structural Assessment (ELSA) Institute for the Protection and Security of the Citizen (IPSC)

JRC research in support of Eurocode 8 (1992-2006)

- Inauguration of ELSA (1992), First demonstration tests, Development of testing techniques, equipment and tools
- Networking with EU research institutions (Universities, Laboratories, Industry)
- A series of reference full/large-scale earthquake tests in support of Eurocode 8 as part of European joint projects financed by the Commission (e.g. PREC8, ICONS, ECOEST)


(DAS)

RESEARCH (PRE-NORMATIVE) IN SUPPORT OF THE EUROCODES

Commission	of the European Commun	nities	
industri	ial proce	SSES	
BUILDING	AND CIVIL ENGINEER	ING	
	urocode No 8		
Structures	in seismic re Design —	gions	
Carry	Part 1		
	May 1988 edition		
	am		
	Mili		

Report EUR 12266 EN

4

1992-1998 – Reference tests with impact on the ENVs conversion

Eurocode 8 – Part 1- RC buildings (1994)

Concrete buildings designed to EC2 and EC8

- The first building designed to EC2/EC8
- Use of Tempcore Steel Reinforcement
- Check performance for Serviceability, Damage Limit and Ultimate Limit States
- Effects of infill panels

Consequences:

Tempcore steel allowed for seismic design From 3 to 2 ductility classes in EC8

Eurocode 8 – "Part 2" (EN1998-2)-Bridges

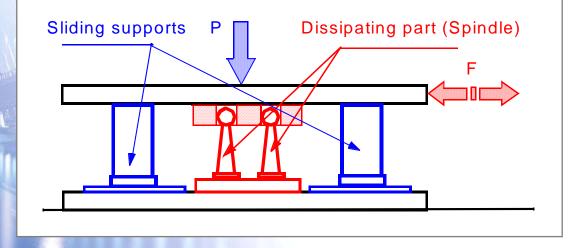
Concrete Bridges designed to EC2 and EC8

- The first bridges designed to EC8 part 2
- Rectangular Hollow cross-section (most common in Europe)
- Ductile capacity of bridge Piers
- Irregularity in bridges, Alternative design methods
- Non-synchronous earthquake motions
- Seismic Isolation

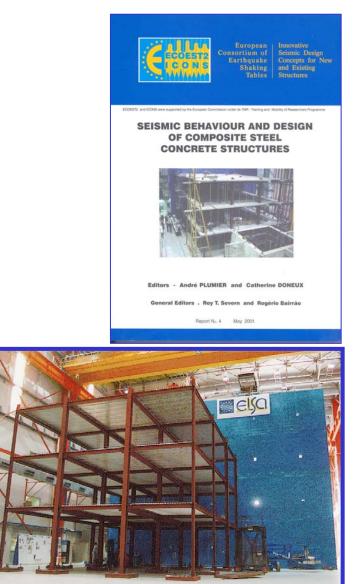
Consequences:

- EC8 design accepted for regular bridges
 - Deformability in detriment of strength for irregular bridges (isolation – a suitable and economical solution)

Hysteretic Isolation-Dissipation (I/D) Devices for Bridges



7


Steel-concrete composite buildings

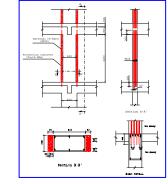
Composite (Steel-Concrete) buildings

- Informative Annex in EC8 because of insufficient evidence on:
 - Ductility of partially-encased composite sections
 - Beam/slab assemblage slab participation – influence in the plastic hinge zones
 - Capacity design issues
 - Semi-rigid connections

Consequences:

Composite buildings back to the normative part (EN1998-1, Section 7) PT1 basis proposal on the experimental work at ELSA

Assessment and retrofitting of existing buildings (EC8 'Part 1.4' - EN1998-3)


- Existing Vulnerable Buildings (60~70's) – A major source of risk
 - Assessment, Retrofit
 - Re-design methods
 - Effects of infill walls
 - Cost/benefit analysis for different techniques/solutions including demolition
 - EC8 part 1.4

Consequences:

Input to PT4 technical work Different Traditions/Common Practice – other techniques aspects for further research

Dual (Frame-Wall) Structures and Innovative Design Methods

Innovative 'against' Eurocode 8 Design

- Deformation based design the fashion – more rational
- Compare Eurocode 8 design with newly proposed design methods

Consequences:

Better performance for the EC8 design - ! ? Innovative methods – 'Not yet enough mature for codification' Further research is needed

11

1999-2006 – Reference tests with implications on the EN conversion

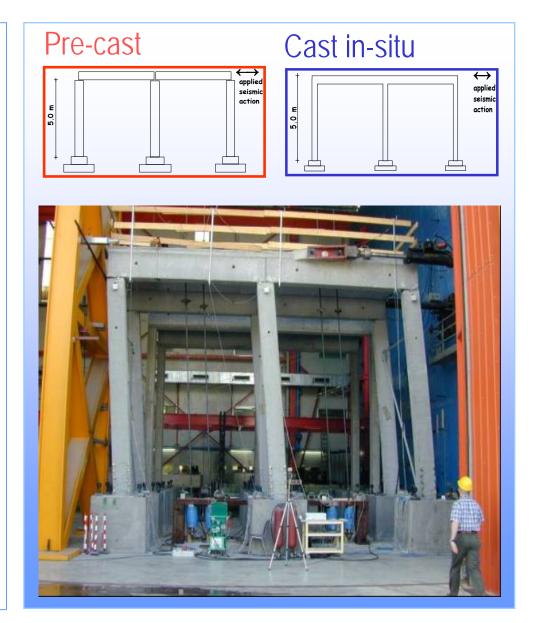
Cyclic and PSD testing of a high ductility moment resisting composite structure

Composite sway frames designed according to EC3, EC4 and EC8

- Provide background information on the behaviour of composite frames under monotonic and cyclic loads
- Study the second order effects on sway frames and current limitations and restriction of current standards (EC3, EC4, EC8)

Consequences:

- EC3 criterion to distinguish between sway and rigid frames is appropriate
- Improved solutions proposed to satisfy the serviceability limitstate of EC8
- Proposal of more accurate q values


Seismic behaviour of RC industrial buildings

Precast structures penalized as for force reduction factor?

- q factor much smaller than in current national codes
- Possible penalization of precast industry with respect to cast in situ technologies
- Need for a rational definition of q factor

Consequences:

Proposal for a new value of the q factor for precast structures Light thrown onto the deformation limits Importance of the connections.

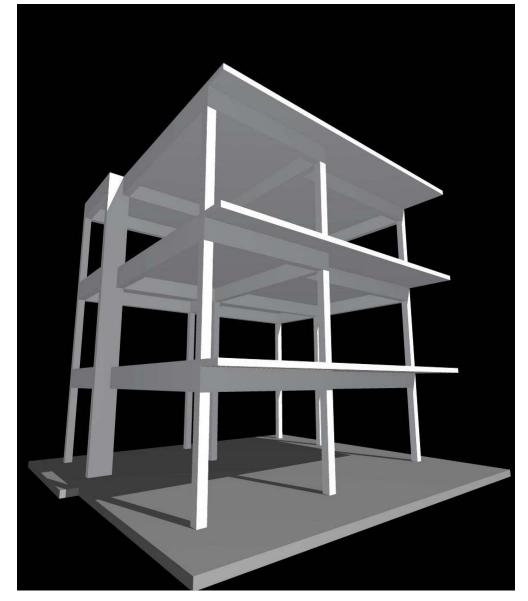
Seismic Behaviour & Assessment of RC flat-slab structures

Flat-slab structures

- Deformability/Damage:
 - System flexibility
 →second-order effects
 - Torsion of traversal beams → Severe local damages
 - Residual deformations

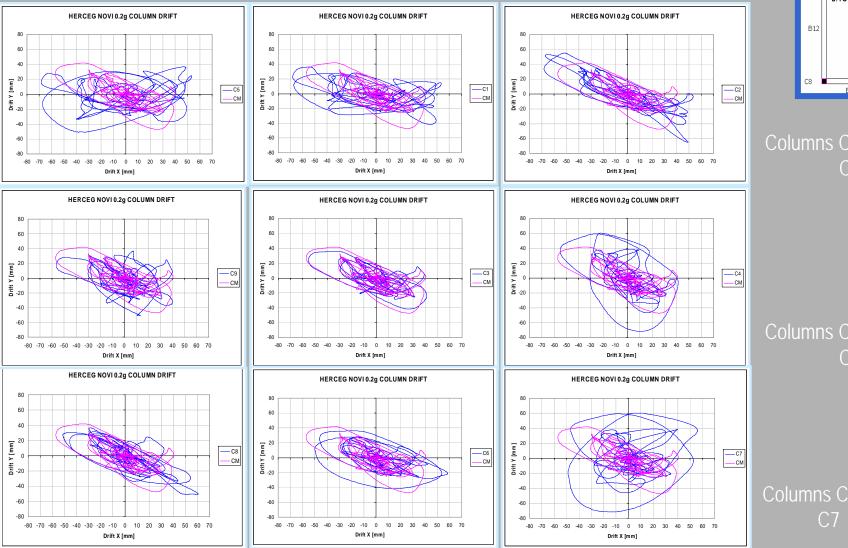
Consequences:

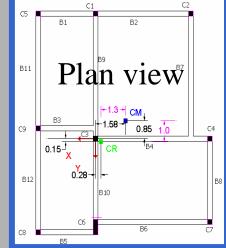
- Calibration of existing models.
- Reduced slab-participation compared to EC2 (vertical loading)
- Primary and Secondary resisting-systems approach


3D - PsD Testing of a Torsionally Unbalanced Structure (Spear project)

Assessment and rehabilitation of existing buildings

- Importance of the torsional response in irregular structures
- Testing of existing analysis and assessment methods
- Need for a conceptual framework in rehabilitation

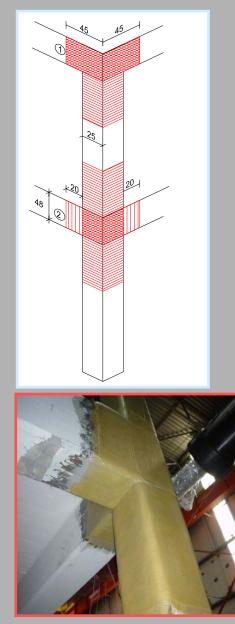

Consequences:

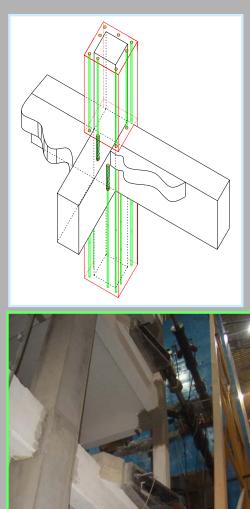

Improved knowledge of the effects of torsional response New assessment methods Improved guidelines for the rehabilitation of existing buildings

Original Structure: 0.20g Input

2nd st. column polar diagrams

Spear structure


Damage Pattern



Visible damage after the 0.20g PGA test

FRP Wrapping

RC jackets

•

Ongoing and Future research in support of Eurocode 8

- Ongoing:
 - Pre-cast structures, Masonry (unreinforced) structures, New Materials (FRP)...
- Research needs for improved seismic protection
 - Harmonized seismic hazard map for Europe; Flat-slab structures; Masonry, Structure-foundation-soil system …
 - Framework Programme 7 (FP7 / 2007-2013)
 - European Technology Platforms (ECTP, ESTEP, ...) Defining research priorities for short, medium and long terms (competitiveness, quality of life, ...)
 - Vision and Research Agenda for Earthquake Engineering (Key issues, Appropriate placement, Effective mitigation, ...)

 Vision and programme for the European Research Infrastructures -Integration of New European Countries and Internal Collaboration (America, Asia, Others)

Conclusion

- Eurocode 8: a seismic design code backed by experimental verification and complementary numerical calibration:
 - Check of structural performance (deformation capacities and damage states checked experimentally for earthquake motions corresponding to serviceability, damage and collapse limit states).

Framework Programme 7 (FP7 / 2007-2013)

- Eurocode 8 (say: The Eurocodes) must take advantage of the opportunities, offered by FP7 (longer duration, innovation, ...), for:
 - their Further Development, and
 - their Further Harmonization (NDPs in need of scientific evidence for Harmonization)

Thank you for your attention

http://elsa.jrc.it artur.pinto@jrc.it

