

Eurocode 8 – Buildings.

Steel and Composite.

André PLUMIER

Workshop - 27-29 November 2006, Varese, Italy

Origin of Eurocode 8 rules on steel and composite steel – concrete structures

1986. ECCS Design Recommandations ECCS: European Convention for Constructional Steelwork Authors: Aribert, Ballio, Mazzolani, Plumier, Sedlacek

1994. 1st Eurocode 8 = ENV For steel structures ≈ ECCS Recommendations For composite: really weak.
1994 - 2000 Research: ICONS Project ECOEST, ECOLEADER

PCOERTy and ICOME ware trapported by the Eartopean Commission under its Tally - Training and Mobile of Researchests Programme

SEISMIC BEHAVIOUR AND DESIGN OF COMPOSITE STEEL CONCRETE STRUCTURES

Editors - André PLUMIER and Catherine DONEUX

General Editors . Roy T. Severn and Rogério Balrrão

Peport Nu. 4 May 2001

ICONS Reports

<= **Topic 4**

= Background document to Eurocode 8 on composite steel concrete structures.

The world most developed code for those structures

Area

Eurocode 8. Section 6. Steel Buildings

6.1 General

Design ConceptsqDuctility classesNon Dissipative Structures $1 \le q \le 1,5$ DCLL for LowDissipative Structures1,5 < q < 4DCMM for MediumDissipative structures $q \ge 4$ DCHH for HighDuctility classes: $q \ge 4$ DCHH for High

Design of non dissipative structures. (Eurocode 3)

- requirements on steel material + bolts 8.8 -10.9
- preferably in low seismicity regions
- K bracings may not be used

Area

6.2 Material

 f_y and toughness of steel components and the welds at service temperature => dissipative zones at expected places

Conditions on fy

a) dissipative zones $f_{y,max} < 1,1 \gamma_{ov} f_y$ γ_{ov} material overstrength factor fy : nominalEx: S235, $\gamma_{ov} = [1,25] = fy,max = 323$ N/mm2

- **b)** design based on a single nominal yield strength f_y for both dissipative and non dissipative zones
 - a higher value $f_{y,max}$ specified for dissipative zones;
 - nominal f_y for non dissipative zones and connections
 - Ex: S355 non dissipative zones

S235 dissipative zones, with $f_{y,max} = 355 \text{ N/mm2}$

c) $f_{y,max}$ of dissipative zones is measured=> $\gamma_{0v} = 1$

Bolts 8.8 ou 10.9 preloaded EN 1090

6.12 Control of design and construction

- ▲ Drawings indicate details, steel grades... noting the maximum permissible yield stress f_{ymax} of the steel to be used in the dissipative zones
- ▲ Tightening of bolts to EN 1090
- ▲ No structural changes involving a variation in stiffness or strength of more than 10 % of the values assumed in design
- ▲ If not, appropriate corrections or justifications

Are

Euro-Mediterranean

the

2

Future

the

EUROCODES **Building the Future**

4

6.5.2 General Criteria for Dissipative Structural Behaviour

▲ Dissipative zones: adequate ductility and resistance

▲ Yielding, buckling, hysteretic behaviour do not affect stability.

Elements in Compression or Bending

Ductility Class	<u>Behaviour factor q</u>	Cross Sectional Class
DCH	<i>q</i> > 4	class 1
DCM	$2 \leq q \leq 4$	class 2
DCM	$1,5 \leq q \leq 2$	class 3
		\Rightarrow limits of b/t_{f}

- ▲ Semi-rigid partial strength connections:
 - **OK if:** adequate rotation capacity (<=>global deformations)
 - members framing into connections are stable
 - effect of connections deformations on drift analysed

▲ Non-dissipative parts and the elements connecting them to dissipative parts have overstrength (development of cyclic yielding of dissipative parts)

6.5.5 Connections in dissipative zones

(3)For fillet weld or bolted non dissipative connections $R_d \ge 1,1 \ \gamma_{ov} R_{fy}$ R_d R_d resistance of the connection according to Eurocode 3, R_{fy} plastic resistance of the connected dissipative member

In ENV, Rfy computed with "appropriate estimation fyd of the actual value of the yield strength". "appropriate" was a problem (6) The adequacy of design should be supported by experimental evidence ...to conform with requirements defined... for each structural type and ductility class.

Example: moment resisting frames plastic rotation capacity $\theta p = \delta / 0,5L$ ductility class DCH : $\theta p \ge 35$ mrad DCM with $q \ge 2$ $\theta p \ge 25$ mrad

Area

6.6 Moment frames
Design Criteria
Target global mechanism:
plastic hinges in beams, not in columns
(waived at base, at top level, in 1 storey buildings if in columns: $N_{\rm Sd} / N_{\rm Rd} < 0.3$
General criterion: $\sum M_{\rm Rc} \ge 1.3 \sum M_{\rm Rb}$ Beams $\frac{M_{\rm Ed}}{M_{\rm pl,Rd}} \le 1.0$
 $\frac{N_{\rm Ed}}{N_{\rm pl,Rd}} \le 0.15$
 $\frac{V_{\rm Ed}}{V_{\rm pl,Rd}} \le 0.5$
 V_{Ed} : capacity design to
 V_{Ed} : capacity design to
 V_{Ed}

$$\frac{N_{\text{Ed}}}{N_{\text{pl,Rd}}} \leq 0,15 \qquad \frac{V_{\text{Ed}}}{V_{\text{pl,Rd}}} \leq 0,5 \qquad V_{Ed} : capacity \ design \ to \\ beam \ plasic \ moments \ M_{pl,RD} \\ V_{\text{Ed}} = V_{\text{Ed},\text{G}} + V_{\text{Ed},\text{M}} \\ V_{\text{Ed},\text{M}} = (M_{\text{pl,Rd},\text{A}} + M_{\text{pl,Rd},\text{B}})/L$$

Columns

$$\begin{split} N_{\rm Ed} &= N_{\rm Ed,G} + 1, 1 \gamma_{\rm ov} \, \Omega N_{\rm Ed,E} \\ M_{\rm Ed} &= M_{\rm Ed,G} + 1, 1 \gamma_{\rm ov} \, \Omega M_{\rm Ed,E} \\ V_{\rm Ed} &= V_{\rm Ed,G} + 1, 1 \gamma_{\rm ov} \, \Omega V_{\rm Ed,E} \end{split}$$

 Ω minimum section overstrength $\Omega_i = M_{pl,Rd,i}/M_{Ed,i}$ of all beams dissipative zones MEd, i design bending moment in beam i (seismic situation) Mpl,Rd, i. plastic moment

Workshop - 27-29 November 2006, Varese, Italy

Area Euro-Mediterranean the 2. Future the

Workshop - 27-29 November 2006, Varese, Italy

Connection design detail \Leftrightarrow Ductility classes: National Annexes

Shear resistance of framed web panels

Area

6.7 Frames with concentric bracings

Dissipative elements: diagonals in tension Beams and columns resist gravity loads Diagonals considered in the analysis under seismic action

▲ Frames with diagonal bracings

Standard model: only tension diagonals participate in structural resistance allowed consider compression diagonal, if model OK +non linear analysis

Diagonals

$$N_{\text{pl,Rd}} \ge N_{\text{ed}}$$

diagonal slenderness: 1,3 < $\overline{\lambda} \le 2,0$

Beams & columns $N_{Rd}(M_{Ed}) \ge N_{Ed,G} + 1,1 \gamma_{ov} \Omega.N_{Ed,E}$

 $\Omega_i = N_{\text{pl,Rdi}} / N_{\text{Edi}}$ section overstrength of diagonal For homogeneous dissipative behaviour $(\max \Omega_i - \min \Omega_i) / \Omega_i = 0.25$

Frames with V or Λ bracings

Dissipative elements: diagonals in tension

Standard model: only beams and columns are in the model for gravity loads Compression and tension diagonals participate in structural resistance to seismic action + and - diagonals considered in standard analysis

Diagonals

$$\frac{N_{\rm pl,Rd}}{\lambda} \ge N_{\rm Ed}$$

$$N_{\rm pl,Rd}$$
 design bukling resistance

Beams and columns Capacity design to diagonals $N_{\rm pl,Rd} (M_{\rm Ed}) \ge N_{\rm Ed,G} + 1, 1\gamma_{\rm ov} \Omega.N_{\rm Ed,E}$ $\Omega \text{ minimum value of } \Omega_{\rm i} = N_{\rm pl,Rd,i}/N_{\rm Ed,i}$

Beams resist all non-seismic actions without considering the intermediate support given by the diagonals+ the unbalanced vertical seismic action effect applied to the beam by the braces after buckling of the compression diagonal.

This force is calculated using:

Diagonal bracings - Tension and compression diagonals not intersecting

Design should consider tensile and compression forces in columns

- adjacent to diagonals in compression
- corresponding to buckling load of diagonals

Tronçon d'excentrement

Workshop - 27-29 November 2006, Varese, Italy

Elements called "seismic links" are designed to dissipate energy

3 categories:short links dissipate energy by yielding in shearlong links dissipate energy by yielding in bending
intermediate links...bending and shear

Length e of links defining categories(symetrical action effects->)short links $e < 1.6 M_{p,link}/V_{p,link}$ long links $e > 3.0 M_{p,link}/V_{p,link}$

Length e of links defining categories(non symetrical action effects->)short links $e_s < 0.8 M_{p,link} / V_{p,link}$ long links $e_L > 1.5 M_{p,link} / V_{p,link}$

Stiffeners in links.

Short links (shear on complete length)

Long links (plastic hinges at both ends)

Members not containing seismic links: Capacity design to the links. Checks: like for concentric bracings

$$N_{Rd}(M_{Ed}, V_{Ed}) \ge N_{Ed,G} + 1,1\gamma_{ov}\Omega N_{Ed,E}$$

$$\Omega_{i} = 1,5 M_{p,link,i}/M_{Edi} \qquad \Omega_{i} = 1,5 V_{p,link,i}/V_{Ed}$$

EUROCODES Building the Future 6.9 Inverted pendulum structure

 $\overline{\lambda} \leq 1,5 \\ \theta \leq 0,20$

<u>6.10</u>

Structures with concrete cores or concrete walls

Concrete structure is primary structure

Dual structures

Moment resisting frames and braced frames acting in the same direction: designed using a single *q* factor. Horizontal forces: distributed between frames according to their elastic stiffness

Mixed structures

Reinforced concrete infills positively connected to steel structure=> composite Moment resisting frame with infills structurally disconnected from frame on lateral and top sides: design as steel structures. Infills in contact: frame-infill interaction to take into account.

EUROCODES **Building the Future** comments. 1. In 1994, Northridge earthquake: steel connections damaged by hundreds Unlikely with Eurocodes 3 and 8 and European practice Europe -Required steel properties toughness -Weldability of base material -Welding process Europe: shop welds -Connection design: b

very low

"not for dynamic applications" site welding

welded end plate at shop-bolts on site

mix of bolts&welds in 1 section

2. Reduced beam sections RBS or "dogbones" were invented in Europe.

EUROCODES Building the Future

Eurocode 8 Section 7. Composite Steel Concrete Structures.

7.1 General

Design Options

- Steel only => Disconnection (defined)
- Composite=> Rules EC4 + EC8

Design Concepts	<i>q</i>	Ductility classes
Non Dissipative	$1 \le q \le 1,5$	DCL
Dissipative	1,5 < q < 4	DCM
	$q \ge 4$	DCH

Ductility classes: plastic deformation capacity without buckling

Non dissipative structures.Eurocode 3 & 4Requirementson steel material + bolts 8.8 -10.9only in low seismicity regionsK bracings may not be used

EUROCODES

7.2 Materials

Steel: like for seismic design of steel structures

 f_y max (not more than 35% higher the steel grade e.g. 235 for S 235) toughness

Concrete: $f_c > C20/25$ $f_c < C40/50 => C30/35$ Rebars: 2 classes (ductile-non ductile) f_u / f_v A%

7.3 Structural types

Moment resisting frames.

Beams & columns: steel or composite

Concentric braced frames.

Eccentrically braced frames.

Columns & beams: steel or composite. Braces: steel

Columns & beams: steel or composite Links: steel, working in shear

 Structural systems. R.C.walls behaviour =>
 Type 2
 Type 3

 Composite steel plate shear walls
 Image: Composite steel plate shear walls
 Image: Composite steel plate shear walls
 Image: Composite steel plate shear walls

Type 1

Behaviour factors q

- q for composite moment and braced frames: like steel structures

- wall systems. Table

Workshop - 27-29 November 2006, Varese, Italy

7.4. Structural Analysis

Scope: dynamic elastic $E_a / E_c = 7$ 2 Stiffness of sections => effective concrete (M+)

=> only rebars (*M*-)

7.5.2 General Criteria for Dissipative Structural Behaviour Like steel 6.5.2

7.5.3 Plastic resistance of dissipative zones
 Two plastic resistances considered:

 a lower bound in checks of sections of dissipative elements
 of global seismic resistance
 computed considering concrete and ductile steel components

-an upper bound for capacity design of elements&connections adjacent to the dissipative zone computed considering all components in the section including non ductile ones (e.g. welded meshes).

7.5.4 Detailing rules for composite connections in dissipative zones

Design objective: integrity of concrete, yielding in steel

- -Dissipative connections allowed
- -Rebars sections in joint region: models satisfying equilibrium
- -Yielding of rebars allowed
- -In fully encased framed web panels of beam/column connections
- -Panel zone resistance = Σ concrete & steel shear panel resistance

aspect ratio $h_{\rm b}/b_{\rm p}$ of the panel satisfies conditions

7.6 Rules for members. General

Local ductility of members in compression and/or bending => walls slenderness DCH: 35 mrad DCM: 25 mrad Steel and unencased steel parts of composite sections: EC3-EC4

Limits for partially encased relaxed if straight bars provided Section classes for partially encased: DCH, DCM, DCL => Class 1, 2, 3 of EC4

Ductility Class of Structure	DCH	DCM	DCL
Behaviour Factor q	4 < q	1.5 < q < 4	1 < <i>q</i> < 1.5
Partially Encased			
flange outstand limits c/t	9 г	14 ε	20 ε
with straight bars welded to flanges	13,5 ε	21 ε	30 ε
Filled Rectangular			
<i>h/t</i> limits	24 ε	38 ε	52 ε
Filled Circular			
<i>d/t</i> limits	80 ε²	85 ε ²	90 ε²
$\varepsilon = (f_y/235)0.5$		Workshop -	27-29 November 2006, Vare

Columns

```
Columns generally not dissipative => EC 4 design
Columns may be dissipative : - at ground level in moment frames
- top&bottom of fully encased columns at any storey
(= "critical zones" of RC)
```

Bond and friction shear resistance not reliable in cyclic conditions In non-dissipative columns design bond stress = 1/3 static If bond stress insufficient => shear connectors

For all columns, in <u>bending</u>, steel alone or combined resistances of steel and concrete may be considered

For <u>shear</u> resista	nce: strong restrictions	(research needed)
fully encased	=> concrete section resistan	ce
partially encased	=> steel section resistance	
filled	=> either steel or concrete of	considered resistance

EUROCODES Building the Future

Steel beams with slab

Design objective: - maintain integrity of slab

- yielding in steel section and/or rebars

EUROCODES Building the Future Steel beams with slab

- Partial shear connection in dissipative zones of beams OK if
 - # in *M*>0 region, connection degree > 0,8
 - *#* total resistance of connectors in *M*<0 region > plastic resistance of rebars.
- -Reduction of shear resistance by a rib shape efficiency factor k_r if steel sheeting with ribs transverse to beams

-Full shear connection required with non ductile connectors

Effective	width <u>b_{eff}</u>
$\underline{\boldsymbol{b}}_{\underline{\mathrm{eff}}} = 2 \boldsymbol{b}_{\mathrm{e}}$	<u>b_{eff}</u> ≠ for

elastic analysis plastic resistance

<u> </u>	Trans.beam
-Interior	Present
column or not	
-Exterior	Fixed to
column column	
-Exterior	Not active.
column	

<u>b_e for M_{Rd}</u>	<u>b_e for I</u>
<i>M</i> ⁻ : 0,1 <i>L</i>	0,05 L
$M^+: 0,075 L$	0,025
<i>M</i> ⁻: 0,1 <i>L</i>	0,05 <i>L</i>
$M^+: 0,075 L$	0,025 <i>L</i>
<i>M</i> -: 0	0
$M^+:b_{\rm c}/2$ or $h_{\rm c}/2$	0,025 L

Ι

 $M_{\rm pl}$

Moment Resisting Frames Dissipative zones in beam with slab: vicinity of columns "Seismic rebars" needed Section and layout to achieve ductility => Annex C

A/_2

Workshop - 27-29 November 2006, Varese, Italy

7.7 Moment frames

In beams, two different stiffness :

 EI_1 part of spans submitted to M > 0 (slab uncracked) EI_2 M < 0 (slab cracked)

Or an equivalent inertia I_{eq} : $I_{eq} = 0.6 I_1 + 0.4 I_2$

Columns: $(EI)c = EI_a + 0.5 E_{cm} I_c + E I_s$ E_s and E_{cm} : modulus of elasticity for steel and concrete I_a , I_c and I_s : moment of inertia of steel section, concrete and rebars Composite trusses may not be used as dissipative beams.

Concrete disconnection rule

Beam plastic resistance: only steel if slab totally disconnected from steel frame in a diameter $2b_{eff}$ zone around a column

Area

Euro-Mediterranean

the

_

Future

the

ANNEX C:

SEISMIC DESIGN OF THE SLAB REINFORCEMENTS OF COMPOSITE T BEAMS WITH SLAB IN MOMENT FRAMES

- **<u>General</u>**: 2 conditions to ensure ductility in bending
- avoid early buckling of steel section (classes of sections + x/d)
- avoid early crushing of slab concrete (*x/d* limit + <u>rebars required</u>)
- => 2 limits of section A₈ of reinforcement in the slab

Exterior Column Case

Area **Euro-Mediterranean** the **Building the Future in**

no concrete edge beam façade steel beam see section AJ.3.1.3.

 $A_{\rm S} \leq F_{\rm Rd3}/(f_{\rm sk}/\gamma_{\rm s})$ $F_{\rm Rd3} = n \ge F_{\rm stud}$ n = number of connectors in the effective width $F_{\rm stud} = P_{\rm Rd}$ = design resistance of one connector façade beam checked in bending, shear and torsion

Exterior Column Case 3 Force Transfer Mechanisms of Slab Compression

Workshop - 27-29 November 2006, Varese, Italy

↓ p^c

EUROCODES Building the Future

Mechanism 2

Compression on column sides by concrete struts

concrete edge beam or concrete into the column flanges no façade steel beam see section AJ.3.2.2.

$$F_{Rd2} = 0.7 h_c d_{eff} (0.85 f_{ck}/\gamma_c)$$

$$A_T \ge \frac{F_{Rd2}}{f_{sk,T}/\gamma_s} = 0.3 h_c d_{eff} \frac{f_{ck}/\gamma_c}{f_{sk,T}/\gamma_s} \qquad d_{eff} : \text{depth of the slab}$$

max compr. force : $F_{Rd1} + F_{Rd2} = b_{eff} d_{eff} (0.85 f_{ck}/\gamma_c)$ $b_{eff \ connec}^+ = 0.7 h_c + b_c \cong 1.7 b_c \cong 0.085 L$

 $<< b_{eff}^{+} = 0.15 L \cong 0.5 b_{eff}^{+}$ (EC4)

Mechanism 3Compression on connectors of facade steel beam $F_{Rd3} = n \ge F_{stud}$ $n = number of connectors in effective width<math>F_{stud} = P_{Rd}$ F_{stud} $F_{stud} = P_{Rd}$ F_{stud}

FRd3 \downarrow 1/2 FRd3 b_{eff} 1/2 FRd3 \downarrow 1/2 FRd3 b_{eff}

concrete edge beam present or not façade steel beam see section AJ.3.2.3.

> maximum compression force $b_{eff} d_{eff} (0.85 f_{ck}/\gamma_c)$ transmitted if:

> > $F_{\rm Rd1} + F_{\rm Rd2} + F_{\rm Rd3} > b_{\rm eff} d_{\rm eff} (0.85 f_{\rm ck}/\gamma_{\rm c})$

=> choose n to achieve adequate F_{Rd3}

Interior Column Case

Mechanism 2

Compressed concrete struts

Interior Column Case

Building the Future

Interior Column Case

 $\frac{\text{Without Transverse Beam:}}{A_{T} \ge \frac{F_{Rd2}}{f_{sk,T}/\gamma_{s}} = 0.3h_{c}d_{eff}\frac{f_{ck}/\gamma_{c}}{f_{sk,T}/\gamma_{s}}}$

 $F_{\text{Rd1}} = b_{\text{c}} d_{\text{eff}} (0.85 f_{\text{ck}}/\gamma_{\text{c}})$ $F_{\text{Rd2}} = 0.7 h_{\text{c}} d_{\text{eff}} (0.85 f_{\text{ck}}/\gamma_{\text{c}})$ same section A_{T} on each side of column

Workshop - 27-29 November 2006, Varese, Italy

Resistance: $F_{\text{Rd1}} + F_{\text{Rd2}} = (0.7 h_{\text{c}} + b_{\text{c}}) d_{\text{eff}} (0.85 f_{\text{ck}}/\gamma_{\text{c}})$ Applied force : tension of re-bars (*M*- side) + compression of concrete (*M*+ side) $F_{\text{St}} + F_{\text{Sc}} = A_{\text{S}} (f_{\text{sk}}/\gamma_{\text{s}}) + b_{\text{eff}}^{+} d_{\text{eff}} (0.85 f_{\text{ck}}/\gamma_{\text{c}})$

Impossible to transfer force corresponding to effective width under M > 0 & M < 0=>situation is not controlled = no ductility

With Transverse Beam

 F_{Rd3} activated $F_{\text{Rd3}} = n \ge F_{\text{stud}}$ Resistance: $F_{\text{Rd1}} + F_{\text{Rd2}} + F_{\text{Rd3}} = (0.7 h_{\text{c}} + b_{\text{c}}) d_{\text{eff}} (0.85 f_{\text{ck}}/\gamma_{\text{c}}) + n F_{\text{stud}}$ Check $1.2 (F_{\text{Sc}} + F_{\text{St}}) \le F_{\text{Rd1}} + F_{\text{Rd2}} + F_{\text{Rd3}}$

The situation is controlled and the transferred forces correspond to the EC8 effective widths b-eff = 0.2 L and b+eff = 0.15L

7.8 Composite concentrically braced frames Concepts

- Yielding of diagonals in tension
- Tension only design & no composite braces

7.9 Composite eccentrically braced frames

- Dissipative action occur through yielding in shear of links
- All other members remain elastic
- Links may be short or intermediate with a maximum length e
 - $e < 2M_{\rm p, link}/V_{\rm p, link}$
- Links are made of steel sections, possibly composite with slabs, not encased
- In a composite brace under tension, only the steel section is considered in the resistance of the brace
- Failure of connections is prevented

7.10 Systems made of reinforced concrete shear walls composite with structural steel elements Type 1 and 2 designed to behave as shear walls and dissipate energy in vertical steel sections and rebars

Type 1 Steel or composite frame with concrete infills Type 2 Concrete walls reinforced by vertical steel sections

Type 1 and 2 = walls with plastic hinge at base vertical encased steel = reinforcements for bending

Shear carried by the reinforced concrete wall Gravity and overturning moment carried by the wall acting composedly with the vertical boundary members

in the coupling beams

Embedment length le required $l_e = 1,5$ x steel beam depth Rules on connections apply: face bearing plates, vertical rebars sections, etc

7.11 Composite steel plate shear walls Designed to yield through shear of the steel plate

Stiffened by encasement and attachment to reinforced concrete to prevent buckling of steel.

EUROCODES Building the Future

Faculté des Sciences Appliquées Département d'Architecture, Géologie, Environnement & Constructions

ArGEnCo

CONSTRUCTIONS EN ZONE SISMIQUE

André PLUMIER Edition 2006

Document téléchargeable sur le site du Département ArGEnCo : ww.ArGEnCo.ULg.ac.be

And finally... education is the key

2 personal involvments: - writing 1 book for students - Organising seminars in Algeria for a total of 15 days On seismic design of bridges, soils and foundations, buildings and retrofitting.

With the financial help of the European Investment Bank With the friendly contribution of a number of specialists. With constant reference to Eurocode 8

Thank you for your attention !